blob: add5c538821c3f82024ed8145ebeda6f07b79158 [file] [log] [blame]
# This file is part of pybootchartgui.
# pybootchartgui is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pybootchartgui is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.
import cairo
import math
import re
import random
import colorsys
import functools
from operator import itemgetter
class RenderOptions:
def __init__(self, app_options):
# should we render a cumulative CPU time chart
self.cumulative = True
self.charts = True
self.kernel_only = False
self.app_options = app_options
def proc_tree (self, trace):
if self.kernel_only:
return trace.kernel_tree
else:
return trace.proc_tree
# Process tree background color.
BACK_COLOR = (1.0, 1.0, 1.0, 1.0)
WHITE = (1.0, 1.0, 1.0, 1.0)
# Process tree border color.
BORDER_COLOR = (0.63, 0.63, 0.63, 1.0)
# Second tick line color.
TICK_COLOR = (0.92, 0.92, 0.92, 1.0)
# 5-second tick line color.
TICK_COLOR_BOLD = (0.86, 0.86, 0.86, 1.0)
# Annotation colour
ANNOTATION_COLOR = (0.63, 0.0, 0.0, 0.5)
# Text color.
TEXT_COLOR = (0.0, 0.0, 0.0, 1.0)
# Font family
FONT_NAME = "Bitstream Vera Sans"
# Title text font.
TITLE_FONT_SIZE = 18
# Default text font.
TEXT_FONT_SIZE = 12
# Axis label font.
AXIS_FONT_SIZE = 11
# Legend font.
LEGEND_FONT_SIZE = 12
# CPU load chart color.
CPU_COLOR = (0.40, 0.55, 0.70, 1.0)
# IO wait chart color.
IO_COLOR = (0.76, 0.48, 0.48, 0.5)
# Disk throughput color.
DISK_TPUT_COLOR = (0.20, 0.71, 0.20, 1.0)
# CPU load chart color.
FILE_OPEN_COLOR = (0.20, 0.71, 0.71, 1.0)
# Mem cached color
MEM_CACHED_COLOR = CPU_COLOR
# Mem used color
MEM_USED_COLOR = IO_COLOR
# Buffers color
MEM_BUFFERS_COLOR = (0.4, 0.4, 0.4, 0.3)
# Swap color
MEM_SWAP_COLOR = DISK_TPUT_COLOR
# Process border color.
PROC_BORDER_COLOR = (0.71, 0.71, 0.71, 1.0)
# Waiting process color.
PROC_COLOR_D = (0.76, 0.48, 0.48, 0.5)
# Running process color.
PROC_COLOR_R = CPU_COLOR
# Sleeping process color.
PROC_COLOR_S = (0.94, 0.94, 0.94, 1.0)
# Stopped process color.
PROC_COLOR_T = (0.94, 0.50, 0.50, 1.0)
# Zombie process color.
PROC_COLOR_Z = (0.71, 0.71, 0.71, 1.0)
# Dead process color.
PROC_COLOR_X = (0.71, 0.71, 0.71, 0.125)
# Paging process color.
PROC_COLOR_W = (0.71, 0.71, 0.71, 0.125)
# Process label color.
PROC_TEXT_COLOR = (0.19, 0.19, 0.19, 1.0)
# Process label font.
PROC_TEXT_FONT_SIZE = 12
# Signature color.
SIG_COLOR = (0.0, 0.0, 0.0, 0.3125)
# Signature font.
SIG_FONT_SIZE = 14
# Signature text.
SIGNATURE = "http://github.com/mmeeks/bootchart"
# Process dependency line color.
DEP_COLOR = (0.75, 0.75, 0.75, 1.0)
# Process dependency line stroke.
DEP_STROKE = 1.0
# Process description date format.
DESC_TIME_FORMAT = "mm:ss.SSS"
# Cumulative coloring bits
HSV_MAX_MOD = 31
HSV_STEP = 7
# Configure task color
TASK_COLOR_CONFIGURE = (1.0, 1.0, 0.00, 1.0)
# Compile task color.
TASK_COLOR_COMPILE = (0.0, 1.00, 0.00, 1.0)
# Install task color
TASK_COLOR_INSTALL = (1.0, 0.00, 1.00, 1.0)
# Sysroot task color
TASK_COLOR_SYSROOT = (0.0, 0.00, 1.00, 1.0)
# Package task color
TASK_COLOR_PACKAGE = (0.0, 1.00, 1.00, 1.0)
# Package Write RPM/DEB/IPK task color
TASK_COLOR_PACKAGE_WRITE = (0.0, 0.50, 0.50, 1.0)
# Distinct colors used for different disk volumnes.
# If we have more volumns, colors get re-used.
VOLUME_COLORS = [
(1.0, 1.0, 0.00, 1.0),
(0.0, 1.00, 0.00, 1.0),
(1.0, 0.00, 1.00, 1.0),
(0.0, 0.00, 1.00, 1.0),
(0.0, 1.00, 1.00, 1.0),
]
# Process states
STATE_UNDEFINED = 0
STATE_RUNNING = 1
STATE_SLEEPING = 2
STATE_WAITING = 3
STATE_STOPPED = 4
STATE_ZOMBIE = 5
STATE_COLORS = [(0, 0, 0, 0), PROC_COLOR_R, PROC_COLOR_S, PROC_COLOR_D, \
PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W]
# CumulativeStats Types
STAT_TYPE_CPU = 0
STAT_TYPE_IO = 1
# Convert ps process state to an int
def get_proc_state(flag):
return "RSDTZXW".find(flag) + 1
def draw_text(ctx, text, color, x, y):
ctx.set_source_rgba(*color)
ctx.move_to(x, y)
ctx.show_text(text)
def draw_fill_rect(ctx, color, rect):
ctx.set_source_rgba(*color)
ctx.rectangle(*rect)
ctx.fill()
def draw_rect(ctx, color, rect):
ctx.set_source_rgba(*color)
ctx.rectangle(*rect)
ctx.stroke()
def draw_legend_box(ctx, label, fill_color, x, y, s):
draw_fill_rect(ctx, fill_color, (x, y - s, s, s))
draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s))
draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
def draw_legend_line(ctx, label, fill_color, x, y, s):
draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3))
ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi)
ctx.fill()
draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
def draw_label_in_box(ctx, color, label, x, y, w, maxx):
label_w = ctx.text_extents(label)[2]
label_x = x + w / 2 - label_w / 2
if label_w + 10 > w:
label_x = x + w + 5
if label_x + label_w > maxx:
label_x = x - label_w - 5
draw_text(ctx, label, color, label_x, y)
def draw_sec_labels(ctx, options, rect, sec_w, nsecs):
ctx.set_font_size(AXIS_FONT_SIZE)
prev_x = 0
for i in range(0, rect[2] + 1, sec_w):
if ((i / sec_w) % nsecs == 0) :
if options.app_options.as_minutes :
label = "%.1f" % (i / sec_w / 60.0)
else :
label = "%d" % (i / sec_w)
label_w = ctx.text_extents(label)[2]
x = rect[0] + i - label_w/2
if x >= prev_x:
draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 2)
prev_x = x + label_w
def draw_box_ticks(ctx, rect, sec_w):
draw_rect(ctx, BORDER_COLOR, tuple(rect))
ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
for i in range(sec_w, rect[2] + 1, sec_w):
if ((i / sec_w) % 10 == 0) :
ctx.set_line_width(1.5)
elif sec_w < 5 :
continue
else :
ctx.set_line_width(1.0)
if ((i / sec_w) % 30 == 0) :
ctx.set_source_rgba(*TICK_COLOR_BOLD)
else :
ctx.set_source_rgba(*TICK_COLOR)
ctx.move_to(rect[0] + i, rect[1] + 1)
ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1)
ctx.stroke()
ctx.set_line_width(1.0)
ctx.set_line_cap(cairo.LINE_CAP_BUTT)
def draw_annotations(ctx, proc_tree, times, rect):
ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
ctx.set_source_rgba(*ANNOTATION_COLOR)
ctx.set_dash([4, 4])
for time in times:
if time is not None:
x = ((time - proc_tree.start_time) * rect[2] / proc_tree.duration)
ctx.move_to(rect[0] + x, rect[1] + 1)
ctx.line_to(rect[0] + x, rect[1] + rect[3] - 1)
ctx.stroke()
ctx.set_line_cap(cairo.LINE_CAP_BUTT)
ctx.set_dash([])
def draw_chart(ctx, color, fill, chart_bounds, data, proc_tree, data_range):
ctx.set_line_width(0.5)
x_shift = proc_tree.start_time
def transform_point_coords(point, x_base, y_base, \
xscale, yscale, x_trans, y_trans):
x = (point[0] - x_base) * xscale + x_trans
y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3]
return x, y
max_x = max (x for (x, y) in data)
max_y = max (y for (x, y) in data)
# avoid divide by zero
if max_y == 0:
max_y = 1.0
xscale = float (chart_bounds[2]) / (max_x - x_shift)
# If data_range is given, scale the chart so that the value range in
# data_range matches the chart bounds exactly.
# Otherwise, scale so that the actual data matches the chart bounds.
if data_range:
yscale = float(chart_bounds[3]) / (data_range[1] - data_range[0])
ybase = data_range[0]
else:
yscale = float(chart_bounds[3]) / max_y
ybase = 0
first = transform_point_coords (data[0], x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
last = transform_point_coords (data[-1], x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
ctx.set_source_rgba(*color)
ctx.move_to(*first)
for point in data:
x, y = transform_point_coords (point, x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
ctx.line_to(x, y)
if fill:
ctx.stroke_preserve()
ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3])
ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3])
ctx.line_to(first[0], first[1])
ctx.fill()
else:
ctx.stroke()
ctx.set_line_width(1.0)
bar_h = 55
meminfo_bar_h = 2 * bar_h
header_h = 60
# offsets
off_x, off_y = 220, 10
sec_w_base = 1 # the width of a second
proc_h = 16 # the height of a process
leg_s = 10
MIN_IMG_W = 800
CUML_HEIGHT = 2000 # Increased value to accomodate CPU and I/O Graphs
OPTIONS = None
def extents(options, xscale, trace):
start = min(trace.start.keys())
end = start
processes = 0
for proc in trace.processes:
if not options.app_options.show_all and \
trace.processes[proc][1] - trace.processes[proc][0] < options.app_options.mintime:
continue
if trace.processes[proc][1] > end:
end = trace.processes[proc][1]
processes += 1
if trace.min is not None and trace.max is not None:
start = trace.min
end = trace.max
w = int ((end - start) * sec_w_base * xscale) + 2 * off_x
h = proc_h * processes + header_h + 2 * off_y
if options.charts:
if trace.cpu_stats:
h += 30 + bar_h
if trace.disk_stats:
h += 30 + bar_h
if trace.monitor_disk:
h += 30 + bar_h
if trace.mem_stats:
h += meminfo_bar_h
# Allow for width of process legend and offset
if w < (720 + off_x):
w = 720 + off_x
return (w, h)
def clip_visible(clip, rect):
xmax = max (clip[0], rect[0])
ymax = max (clip[1], rect[1])
xmin = min (clip[0] + clip[2], rect[0] + rect[2])
ymin = min (clip[1] + clip[3], rect[1] + rect[3])
return (xmin > xmax and ymin > ymax)
def render_charts(ctx, options, clip, trace, curr_y, w, h, sec_w):
proc_tree = options.proc_tree(trace)
# render bar legend
if trace.cpu_stats:
ctx.set_font_size(LEGEND_FONT_SIZE)
draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, curr_y+20, leg_s)
# render I/O wait
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, IO_COLOR, True, chart_rect, \
[(sample.time, sample.user + sample.sys + sample.io) for sample in trace.cpu_stats], \
proc_tree, None)
# render CPU load
draw_chart (ctx, CPU_COLOR, True, chart_rect, \
[(sample.time, sample.user + sample.sys) for sample in trace.cpu_stats], \
proc_tree, None)
curr_y = curr_y + 30 + bar_h
# render second chart
if trace.disk_stats:
draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, curr_y+20, leg_s)
# render I/O utilization
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, IO_COLOR, True, chart_rect, \
[(sample.time, sample.util) for sample in trace.disk_stats], \
proc_tree, None)
# render disk throughput
max_sample = max (trace.disk_stats, key = lambda s: s.tput)
if clip_visible (clip, chart_rect):
draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \
[(sample.time, sample.tput) for sample in trace.disk_stats], \
proc_tree, None)
pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / proc_tree.duration)
shift_x, shift_y = -20, 20
if (pos_x < off_x + 245):
shift_x, shift_y = 5, 40
label = "%dMB/s" % round ((max_sample.tput) / 1024.0)
draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y + shift_y)
curr_y = curr_y + 30 + bar_h
# render disk space usage
#
# Draws the amount of disk space used on each volume relative to the
# lowest recorded amount. The graphs for each volume are stacked above
# each other so that total disk usage is visible.
if trace.monitor_disk:
ctx.set_font_size(LEGEND_FONT_SIZE)
# Determine set of volumes for which we have
# information and the minimal amount of used disk
# space for each. Currently samples are allowed to
# not have a values for all volumes; drawing could be
# made more efficient if that wasn't the case.
volumes = set()
min_used = {}
for sample in trace.monitor_disk:
for volume, used in sample.records.items():
volumes.add(volume)
if volume not in min_used or min_used[volume] > used:
min_used[volume] = used
volumes = sorted(list(volumes))
disk_scale = 0
for i, volume in enumerate(volumes):
volume_scale = max([sample.records[volume] - min_used[volume]
for sample in trace.monitor_disk
if volume in sample.records])
# Does not take length of volume name into account, but fixed offset
# works okay in practice.
draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, volume_scale / 1024 / 1024),
VOLUME_COLORS[i % len(VOLUME_COLORS)],
off_x + i * 250, curr_y+20, leg_s)
disk_scale += volume_scale
# render used amount of disk space
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
for i in range(len(volumes), 0, -1):
draw_chart (ctx, VOLUME_COLORS[(i - 1) % len(VOLUME_COLORS)], True, chart_rect, \
[(sample.time,
# Sum up used space of all volumes including the current one
# so that the graphs appear as stacked on top of each other.
functools.reduce(lambda x,y: x+y,
[sample.records[volume] - min_used[volume]
for volume in volumes[0:i]
if volume in sample.records],
0))
for sample in trace.monitor_disk], \
proc_tree, [0, disk_scale])
curr_y = curr_y + 30 + bar_h
# render mem usage
chart_rect = (off_x, curr_y+30, w, meminfo_bar_h)
mem_stats = trace.mem_stats
if mem_stats and clip_visible (clip, chart_rect):
mem_scale = max(sample.buffers for sample in mem_stats)
draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % (float(mem_scale) / 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, curr_y+20, leg_s)
draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, curr_y+20, leg_s)
draw_legend_line(ctx, "Swap (scale: %u MiB)" % max([(sample.swap)/1024 for sample in mem_stats]), \
MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s)
draw_box_ticks(ctx, chart_rect, sec_w)
draw_annotations(ctx, proc_tree, trace.times, chart_rect)
draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \
[(sample.time, sample.buffers) for sample in trace.mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \
[(sample.time, sample.used) for sample in mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \
[(sample.time, sample.cached) for sample in mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \
[(sample.time, float(sample.swap)) for sample in mem_stats], \
proc_tree, None)
curr_y = curr_y + meminfo_bar_h
return curr_y
def render_processes_chart(ctx, options, trace, curr_y, w, h, sec_w):
chart_rect = [off_x, curr_y+header_h, w, h - curr_y - 1 * off_y - header_h ]
draw_legend_box (ctx, "Configure", \
TASK_COLOR_CONFIGURE, off_x , curr_y + 45, leg_s)
draw_legend_box (ctx, "Compile", \
TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s)
draw_legend_box (ctx, "Install", \
TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s)
draw_legend_box (ctx, "Populate Sysroot", \
TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s)
draw_legend_box (ctx, "Package", \
TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s)
draw_legend_box (ctx, "Package Write", \
TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, leg_s)
ctx.set_font_size(PROC_TEXT_FONT_SIZE)
draw_box_ticks(ctx, chart_rect, sec_w)
draw_sec_labels(ctx, options, chart_rect, sec_w, 30)
y = curr_y+header_h
offset = trace.min or min(trace.start.keys())
for start in sorted(trace.start.keys()):
for process in sorted(trace.start[start]):
if not options.app_options.show_all and \
trace.processes[process][1] - start < options.app_options.mintime:
continue
task = process.split(":")[1]
#print(process)
#print(trace.processes[process][1])
#print(s)
x = chart_rect[0] + (start - offset) * sec_w
w = ((trace.processes[process][1] - start) * sec_w)
#print("proc at %s %s %s %s" % (x, y, w, proc_h))
col = None
if task == "do_compile":
col = TASK_COLOR_COMPILE
elif task == "do_configure":
col = TASK_COLOR_CONFIGURE
elif task == "do_install":
col = TASK_COLOR_INSTALL
elif task == "do_populate_sysroot":
col = TASK_COLOR_SYSROOT
elif task == "do_package":
col = TASK_COLOR_PACKAGE
elif task == "do_package_write_rpm" or \
task == "do_package_write_deb" or \
task == "do_package_write_ipk":
col = TASK_COLOR_PACKAGE_WRITE
else:
col = WHITE
if col:
draw_fill_rect(ctx, col, (x, y, w, proc_h))
draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
draw_label_in_box(ctx, PROC_TEXT_COLOR, process, x, y + proc_h - 4, w, proc_h)
y = y + proc_h
return curr_y
#
# Render the chart.
#
def render(ctx, options, xscale, trace):
(w, h) = extents (options, xscale, trace)
global OPTIONS
OPTIONS = options.app_options
# x, y, w, h
clip = ctx.clip_extents()
sec_w = int (xscale * sec_w_base)
ctx.set_line_width(1.0)
ctx.select_font_face(FONT_NAME)
draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h))
w -= 2*off_x
curr_y = off_y;
if options.charts:
curr_y = render_charts (ctx, options, clip, trace, curr_y, w, h, sec_w)
curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, sec_w)
return
proc_tree = options.proc_tree (trace)
# draw the title and headers
if proc_tree.idle:
duration = proc_tree.idle
else:
duration = proc_tree.duration
if not options.kernel_only:
curr_y = draw_header (ctx, trace.headers, duration)
else:
curr_y = off_y;
# draw process boxes
proc_height = h
if proc_tree.taskstats and options.cumulative:
proc_height -= CUML_HEIGHT
draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times,
curr_y, w, proc_height, sec_w)
curr_y = proc_height
ctx.set_font_size(SIG_FONT_SIZE)
draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8)
# draw a cumulative CPU-time-per-process graph
if proc_tree.taskstats and options.cumulative:
cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 2)
if clip_visible (clip, cuml_rect):
draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_CPU)
# draw a cumulative I/O-time-per-process graph
if proc_tree.taskstats and options.cumulative:
cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - off_y * 2)
if clip_visible (clip, cuml_rect):
draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_IO)
def draw_process_bar_chart(ctx, clip, options, proc_tree, times, curr_y, w, h, sec_w):
header_size = 0
if not options.kernel_only:
draw_legend_box (ctx, "Running (%cpu)",
PROC_COLOR_R, off_x , curr_y + 45, leg_s)
draw_legend_box (ctx, "Unint.sleep (I/O)",
PROC_COLOR_D, off_x+120, curr_y + 45, leg_s)
draw_legend_box (ctx, "Sleeping",
PROC_COLOR_S, off_x+240, curr_y + 45, leg_s)
draw_legend_box (ctx, "Zombie",
PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s)
header_size = 45
chart_rect = [off_x, curr_y + header_size + 15,
w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h]
ctx.set_font_size (PROC_TEXT_FONT_SIZE)
draw_box_ticks (ctx, chart_rect, sec_w)
if sec_w > 100:
nsec = 1
else:
nsec = 5
draw_sec_labels (ctx, options, chart_rect, sec_w, nsec)
draw_annotations (ctx, proc_tree, times, chart_rect)
y = curr_y + 60
for root in proc_tree.process_tree:
draw_processes_recursively(ctx, root, proc_tree, y, proc_h, chart_rect, clip)
y = y + proc_h * proc_tree.num_nodes([root])
def draw_header (ctx, headers, duration):
toshow = [
('system.uname', 'uname', lambda s: s),
('system.release', 'release', lambda s: s),
('system.cpu', 'CPU', lambda s: re.sub('model name\s*:\s*', '', s, 1)),
('system.kernel.options', 'kernel options', lambda s: s),
]
header_y = ctx.font_extents()[2] + 10
ctx.set_font_size(TITLE_FONT_SIZE)
draw_text(ctx, headers['title'], TEXT_COLOR, off_x, header_y)
ctx.set_font_size(TEXT_FONT_SIZE)
for (headerkey, headertitle, mangle) in toshow:
header_y += ctx.font_extents()[2]
if headerkey in headers:
value = headers.get(headerkey)
else:
value = ""
txt = headertitle + ': ' + mangle(value)
draw_text(ctx, txt, TEXT_COLOR, off_x, header_y)
dur = duration / 100.0
txt = 'time : %02d:%05.2f' % (math.floor(dur/60), dur - 60 * math.floor(dur/60))
if headers.get('system.maxpid') is not None:
txt = txt + ' max pid: %s' % (headers.get('system.maxpid'))
header_y += ctx.font_extents()[2]
draw_text (ctx, txt, TEXT_COLOR, off_x, header_y)
return header_y
def draw_processes_recursively(ctx, proc, proc_tree, y, proc_h, rect, clip) :
x = rect[0] + ((proc.start_time - proc_tree.start_time) * rect[2] / proc_tree.duration)
w = ((proc.duration) * rect[2] / proc_tree.duration)
draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip)
draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
ipid = int(proc.pid)
if not OPTIONS.show_all:
cmdString = proc.cmd
else:
cmdString = ''
if (OPTIONS.show_pid or OPTIONS.show_all) and ipid is not 0:
cmdString = cmdString + " [" + str(ipid // 1000) + "]"
if OPTIONS.show_all:
if proc.args:
cmdString = cmdString + " '" + "' '".join(proc.args) + "'"
else:
cmdString = cmdString + " " + proc.exe
draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, w, rect[0] + rect[2])
next_y = y + proc_h
for child in proc.child_list:
if next_y > clip[1] + clip[3]:
break
child_x, child_y = draw_processes_recursively(ctx, child, proc_tree, next_y, proc_h, rect, clip)
draw_process_connecting_lines(ctx, x, y, child_x, child_y, proc_h)
next_y = next_y + proc_h * proc_tree.num_nodes([child])
return x, y
def draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip):
if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]:
return
draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h))
last_tx = -1
for sample in proc.samples :
tx = rect[0] + round(((sample.time - proc_tree.start_time) * rect[2] / proc_tree.duration))
# samples are sorted chronologically
if tx < clip[0]:
continue
if tx > clip[0] + clip[2]:
break
tw = round(proc_tree.sample_period * rect[2] / float(proc_tree.duration))
if last_tx != -1 and abs(last_tx - tx) <= tw:
tw -= last_tx - tx
tx = last_tx
tw = max (tw, 1) # nice to see at least something
last_tx = tx + tw
state = get_proc_state( sample.state )
color = STATE_COLORS[state]
if state == STATE_RUNNING:
alpha = min (sample.cpu_sample.user + sample.cpu_sample.sys, 1.0)
color = tuple(list(PROC_COLOR_R[0:3]) + [alpha])
# print "render time %d [ tx %d tw %d ], sample state %s color %s alpha %g" % (sample.time, tx, tw, state, color, alpha)
elif state == STATE_SLEEPING:
continue
draw_fill_rect(ctx, color, (tx, y, tw, proc_h))
def draw_process_connecting_lines(ctx, px, py, x, y, proc_h):
ctx.set_source_rgba(*DEP_COLOR)
ctx.set_dash([2, 2])
if abs(px - x) < 3:
dep_off_x = 3
dep_off_y = proc_h / 4
ctx.move_to(x, y + proc_h / 2)
ctx.line_to(px - dep_off_x, y + proc_h / 2)
ctx.line_to(px - dep_off_x, py - dep_off_y)
ctx.line_to(px, py - dep_off_y)
else:
ctx.move_to(x, y + proc_h / 2)
ctx.line_to(px, y + proc_h / 2)
ctx.line_to(px, py)
ctx.stroke()
ctx.set_dash([])
# elide the bootchart collector - it is quite distorting
def elide_bootchart(proc):
return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle'
class CumlSample:
def __init__(self, proc):
self.cmd = proc.cmd
self.samples = []
self.merge_samples (proc)
self.color = None
def merge_samples(self, proc):
self.samples.extend (proc.samples)
self.samples.sort (key = lambda p: p.time)
def next(self):
global palette_idx
palette_idx += HSV_STEP
return palette_idx
def get_color(self):
if self.color is None:
i = self.next() % HSV_MAX_MOD
h = 0.0
if i is not 0:
h = (1.0 * i) / HSV_MAX_MOD
s = 0.5
v = 1.0
c = colorsys.hsv_to_rgb (h, s, v)
self.color = (c[0], c[1], c[2], 1.0)
return self.color
def draw_cuml_graph(ctx, proc_tree, chart_bounds, duration, sec_w, stat_type):
global palette_idx
palette_idx = 0
time_hash = {}
total_time = 0.0
m_proc_list = {}
if stat_type is STAT_TYPE_CPU:
sample_value = 'cpu'
else:
sample_value = 'io'
for proc in proc_tree.process_list:
if elide_bootchart(proc):
continue
for sample in proc.samples:
total_time += getattr(sample.cpu_sample, sample_value)
if not sample.time in time_hash:
time_hash[sample.time] = 1
# merge pids with the same cmd
if not proc.cmd in m_proc_list:
m_proc_list[proc.cmd] = CumlSample (proc)
continue
s = m_proc_list[proc.cmd]
s.merge_samples (proc)
# all the sample times
times = sorted(time_hash)
if len (times) < 2:
print("degenerate boot chart")
return
pix_per_ns = chart_bounds[3] / total_time
# print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns)
# FIXME: we have duplicates in the process list too [!] - why !?
# Render bottom up, left to right
below = {}
for time in times:
below[time] = chart_bounds[1] + chart_bounds[3]
# same colors each time we render
random.seed (0)
ctx.set_line_width(1)
legends = []
labels = []
# render each pid in order
for cs in m_proc_list.values():
row = {}
cuml = 0.0
# print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len (cs.samples))
for sample in cs.samples:
cuml += getattr(sample.cpu_sample, sample_value)
row[sample.time] = cuml
process_total_time = cuml
# hide really tiny processes
if cuml * pix_per_ns <= 2:
continue
last_time = times[0]
y = last_below = below[last_time]
last_cuml = cuml = 0.0
ctx.set_source_rgba(*cs.get_color())
for time in times:
render_seg = False
# did the underlying trend increase ?
if below[time] != last_below:
last_below = below[last_time]
last_cuml = cuml
render_seg = True
# did we move up a pixel increase ?
if time in row:
nc = round (row[time] * pix_per_ns)
if nc != cuml:
last_cuml = cuml
cuml = nc
render_seg = True
# if last_cuml > cuml:
# assert fail ... - un-sorted process samples
# draw the trailing rectangle from the last time to
# before now, at the height of the last segment.
if render_seg:
w = math.ceil ((time - last_time) * chart_bounds[2] / proc_tree.duration) + 1
x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
ctx.rectangle (x, below[last_time] - last_cuml, w, last_cuml)
ctx.fill()
# ctx.stroke()
last_time = time
y = below [time] - cuml
row[time] = y
# render the last segment
x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
y = below[last_time] - cuml
ctx.rectangle (x, y, chart_bounds[2] - x, cuml)
ctx.fill()
# ctx.stroke()
# render legend if it will fit
if cuml > 8:
label = cs.cmd
extnts = ctx.text_extents(label)
label_w = extnts[2]
label_h = extnts[3]
# print "Text extents %g by %g" % (label_w, label_h)
labels.append((label,
chart_bounds[0] + chart_bounds[2] - label_w - off_x * 2,
y + (cuml + label_h) / 2))
if cs in legends:
print("ARGH - duplicate process in list !")
legends.append ((cs, process_total_time))
below = row
# render grid-lines over the top
draw_box_ticks(ctx, chart_bounds, sec_w)
# render labels
for l in labels:
draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2])
# Render legends
font_height = 20
label_width = 300
LEGENDS_PER_COL = 15
LEGENDS_TOTAL = 45
ctx.set_font_size (TITLE_FONT_SIZE)
dur_secs = duration / 100
cpu_secs = total_time / 1000000000
# misleading - with multiple CPUs ...
# idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0
if stat_type is STAT_TYPE_CPU:
label = "Cumulative CPU usage, by process; total CPU: " \
" %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
else:
label = "Cumulative I/O usage, by process; total I/O: " \
" %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x,
chart_bounds[1] + font_height)
i = 0
legends = sorted(legends, key=itemgetter(1), reverse=True)
ctx.set_font_size(TEXT_FONT_SIZE)
for t in legends:
cs = t[0]
time = t[1]
x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * label_width
y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2)
str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, (time/total_time) * 100.0)
draw_legend_box(ctx, str, cs.color, x, y, leg_s)
i = i + 1
if i >= LEGENDS_TOTAL:
break