blob: 9d0364d659920da909fbf92734cb2805448d1a1e [file] [log] [blame]
#include "sensorhandler.hpp"
#include "fruread.hpp"
#include "ipmid.hpp"
#include "types.hpp"
#include "utils.hpp"
#include <ipmid/api.h>
#include <mapper.h>
#include <systemd/sd-bus.h>
#include <bitset>
#include <cmath>
#include <cstring>
#include <phosphor-logging/elog-errors.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/message/types.hpp>
#include <set>
#include <xyz/openbmc_project/Common/error.hpp>
#include <xyz/openbmc_project/Sensor/Value/server.hpp>
static constexpr uint8_t fruInventoryDevice = 0x10;
static constexpr uint8_t IPMIFruInventory = 0x02;
static constexpr uint8_t BMCSlaveAddress = 0x20;
extern int updateSensorRecordFromSSRAESC(const void*);
extern sd_bus* bus;
extern const ipmi::sensor::IdInfoMap sensors;
extern const FruMap frus;
extern const ipmi::sensor::EntityInfoMap entities;
using namespace phosphor::logging;
using InternalFailure =
sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
namespace variant_ns = sdbusplus::message::variant_ns;
void register_netfn_sen_functions() __attribute__((constructor));
struct sensorTypemap_t
{
uint8_t number;
uint8_t typecode;
char dbusname[32];
};
sensorTypemap_t g_SensorTypeMap[] = {
{0x01, 0x6F, "Temp"},
{0x0C, 0x6F, "DIMM"},
{0x0C, 0x6F, "MEMORY_BUFFER"},
{0x07, 0x6F, "PROC"},
{0x07, 0x6F, "CORE"},
{0x07, 0x6F, "CPU"},
{0x0F, 0x6F, "BootProgress"},
{0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
// type code os 0x09
{0xC3, 0x6F, "BootCount"},
{0x1F, 0x6F, "OperatingSystemStatus"},
{0x12, 0x6F, "SYSTEM_EVENT"},
{0xC7, 0x03, "SYSTEM"},
{0xC7, 0x03, "MAIN_PLANAR"},
{0xC2, 0x6F, "PowerCap"},
{0x0b, 0xCA, "PowerSupplyRedundancy"},
{0xDA, 0x03, "TurboAllowed"},
{0xD8, 0xC8, "PowerSupplyDerating"},
{0xFF, 0x00, ""},
};
struct sensor_data_t
{
uint8_t sennum;
} __attribute__((packed));
struct sensorreadingresp_t
{
uint8_t value;
uint8_t operation;
uint8_t indication[2];
} __attribute__((packed));
int get_bus_for_path(const char* path, char** busname)
{
return mapper_get_service(bus, path, busname);
}
// Use a lookup table to find the interface name of a specific sensor
// This will be used until an alternative is found. this is the first
// step for mapping IPMI
int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
{
int rc;
const auto& sensor_it = sensors.find(num);
if (sensor_it == sensors.end())
{
// The sensor map does not contain the sensor requested
return -EINVAL;
}
const auto& info = sensor_it->second;
char* busname = nullptr;
rc = get_bus_for_path(info.sensorPath.c_str(), &busname);
if (rc < 0)
{
std::fprintf(stderr, "Failed to get %s busname: %s\n",
info.sensorPath.c_str(), busname);
goto final;
}
interface->sensortype = info.sensorType;
strcpy(interface->bus, busname);
strcpy(interface->path, info.sensorPath.c_str());
// Take the interface name from the beginning of the DbusInterfaceMap. This
// works for the Value interface but may not suffice for more complex
// sensors.
// tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
strcpy(interface->interface,
info.propertyInterfaces.begin()->first.c_str());
interface->sensornumber = num;
final:
free(busname);
return rc;
}
/////////////////////////////////////////////////////////////////////
//
// Routines used by ipmi commands wanting to interact on the dbus
//
/////////////////////////////////////////////////////////////////////
int set_sensor_dbus_state_s(uint8_t number, const char* method,
const char* value)
{
dbus_interface_t a;
int r;
sd_bus_error error = SD_BUS_ERROR_NULL;
sd_bus_message* m = NULL;
std::fprintf(ipmidbus,
"Attempting to set a dbus Variant Sensor 0x%02x via %s with a "
"value of %s\n",
number, method, value);
r = find_openbmc_path(number, &a);
if (r < 0)
{
std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
return 0;
}
r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
method);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a method call: %s",
strerror(-r));
goto final;
}
r = sd_bus_message_append(m, "v", "s", value);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a input parameter: %s",
strerror(-r));
goto final;
}
r = sd_bus_call(bus, m, 0, &error, NULL);
if (r < 0)
{
std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
}
final:
sd_bus_error_free(&error);
m = sd_bus_message_unref(m);
return 0;
}
int set_sensor_dbus_state_y(uint8_t number, const char* method,
const uint8_t value)
{
dbus_interface_t a;
int r;
sd_bus_error error = SD_BUS_ERROR_NULL;
sd_bus_message* m = NULL;
std::fprintf(ipmidbus,
"Attempting to set a dbus Variant Sensor 0x%02x via %s with a "
"value of 0x%02x\n",
number, method, value);
r = find_openbmc_path(number, &a);
if (r < 0)
{
std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
return 0;
}
r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
method);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a method call: %s",
strerror(-r));
goto final;
}
r = sd_bus_message_append(m, "v", "i", value);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a input parameter: %s",
strerror(-r));
goto final;
}
r = sd_bus_call(bus, m, 0, &error, NULL);
if (r < 0)
{
std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
}
final:
sd_bus_error_free(&error);
m = sd_bus_message_unref(m);
return 0;
}
uint8_t dbus_to_sensor_type(char* p)
{
sensorTypemap_t* s = g_SensorTypeMap;
char r = 0;
while (s->number != 0xFF)
{
if (!strcmp(s->dbusname, p))
{
r = s->typecode;
break;
}
s++;
}
if (s->number == 0xFF)
printf("Failed to find Sensor Type %s\n", p);
return r;
}
uint8_t get_type_from_interface(dbus_interface_t dbus_if)
{
uint8_t type;
// This is where sensors that do not exist in dbus but do
// exist in the host code stop. This should indicate it
// is not a supported sensor
if (dbus_if.interface[0] == 0)
{
return 0;
}
// Fetch type from interface itself.
if (dbus_if.sensortype != 0)
{
type = dbus_if.sensortype;
}
else
{
// Non InventoryItems
char* p = strrchr(dbus_if.path, '/');
type = dbus_to_sensor_type(p + 1);
}
return type;
}
// Replaces find_sensor
uint8_t find_type_for_sensor_number(uint8_t num)
{
int r;
dbus_interface_t dbus_if;
r = find_openbmc_path(num, &dbus_if);
if (r < 0)
{
std::fprintf(stderr, "Could not find sensor %d\n", num);
return 0;
}
return get_type_from_interface(dbus_if);
}
ipmi_ret_t ipmi_sen_get_sensor_type(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
auto reqptr = static_cast<sensor_data_t*>(request);
ipmi_ret_t rc = IPMI_CC_OK;
printf("IPMI GET_SENSOR_TYPE [0x%02X]\n", reqptr->sennum);
// TODO Not sure what the System-event-sensor is suppose to return
// need to ask Hostboot team
unsigned char buf[] = {0x00, 0x6F};
buf[0] = find_type_for_sensor_number(reqptr->sennum);
// HACK UNTIL Dbus gets updated or we find a better way
if (buf[0] == 0)
{
rc = IPMI_CC_SENSOR_INVALID;
}
*data_len = sizeof(buf);
std::memcpy(response, &buf, *data_len);
return rc;
}
const std::set<std::string> analogSensorInterfaces = {
"xyz.openbmc_project.Sensor.Value",
"xyz.openbmc_project.Control.FanPwm",
};
bool isAnalogSensor(const std::string& interface)
{
return (analogSensorInterfaces.count(interface));
}
ipmi_ret_t setSensorReading(void* request)
{
ipmi::sensor::SetSensorReadingReq cmdData =
*(static_cast<ipmi::sensor::SetSensorReadingReq*>(request));
// Check if the Sensor Number is present
const auto iter = sensors.find(cmdData.number);
if (iter == sensors.end())
{
return IPMI_CC_SENSOR_INVALID;
}
try
{
if (ipmi::sensor::Mutability::Write !=
(iter->second.mutability & ipmi::sensor::Mutability::Write))
{
log<level::ERR>("Sensor Set operation is not allowed",
entry("SENSOR_NUM=%d", cmdData.number));
return IPMI_CC_ILLEGAL_COMMAND;
}
return iter->second.updateFunc(cmdData, iter->second);
}
catch (InternalFailure& e)
{
log<level::ERR>("Set sensor failed",
entry("SENSOR_NUM=%d", cmdData.number));
commit<InternalFailure>();
}
catch (const std::runtime_error& e)
{
log<level::ERR>(e.what());
}
return IPMI_CC_UNSPECIFIED_ERROR;
}
ipmi_ret_t ipmi_sen_set_sensor(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto reqptr = static_cast<sensor_data_t*>(request);
log<level::DEBUG>("IPMI SET_SENSOR",
entry("SENSOR_NUM=0x%02x", reqptr->sennum));
/*
* This would support the Set Sensor Reading command for the presence
* and functional state of Processor, Core & DIMM. For the remaining
* sensors the existing support is invoked.
*/
auto ipmiRC = setSensorReading(request);
if (ipmiRC == IPMI_CC_SENSOR_INVALID)
{
updateSensorRecordFromSSRAESC(reqptr);
ipmiRC = IPMI_CC_OK;
}
*data_len = 0;
return ipmiRC;
}
ipmi_ret_t ipmi_sen_get_sensor_reading(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
auto reqptr = static_cast<sensor_data_t*>(request);
auto resp = static_cast<sensorreadingresp_t*>(response);
ipmi::sensor::GetSensorResponse getResponse{};
static constexpr auto scanningEnabledBit = 6;
const auto iter = sensors.find(reqptr->sennum);
if (iter == sensors.end())
{
return IPMI_CC_SENSOR_INVALID;
}
if (ipmi::sensor::Mutability::Read !=
(iter->second.mutability & ipmi::sensor::Mutability::Read))
{
return IPMI_CC_ILLEGAL_COMMAND;
}
try
{
getResponse = iter->second.getFunc(iter->second);
*data_len = getResponse.size();
std::memcpy(resp, getResponse.data(), *data_len);
resp->operation = 1 << scanningEnabledBit;
return IPMI_CC_OK;
}
catch (const std::exception& e)
{
*data_len = getResponse.size();
std::memcpy(resp, getResponse.data(), *data_len);
return IPMI_CC_OK;
}
}
void getSensorThresholds(uint8_t sensorNum,
get_sdr::GetSensorThresholdsResponse* response)
{
constexpr auto warningThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Warning";
constexpr auto criticalThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Critical";
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
const auto iter = sensors.find(sensorNum);
const auto info = iter->second;
auto service = ipmi::getService(bus, info.sensorInterface, info.sensorPath);
auto warnThresholds = ipmi::getAllDbusProperties(
bus, service, info.sensorPath, warningThreshIntf);
double warnLow = variant_ns::visit(ipmi::VariantToDoubleVisitor(),
warnThresholds["WarningLow"]);
double warnHigh = variant_ns::visit(ipmi::VariantToDoubleVisitor(),
warnThresholds["WarningHigh"]);
if (warnLow != 0)
{
warnLow *= std::pow(10, info.scale - info.exponentR);
response->lowerNonCritical = static_cast<uint8_t>(
(warnLow - info.scaledOffset) / info.coefficientM);
response->validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
}
if (warnHigh != 0)
{
warnHigh *= std::pow(10, info.scale - info.exponentR);
response->upperNonCritical = static_cast<uint8_t>(
(warnHigh - info.scaledOffset) / info.coefficientM);
response->validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
}
auto critThresholds = ipmi::getAllDbusProperties(
bus, service, info.sensorPath, criticalThreshIntf);
double critLow = variant_ns::visit(ipmi::VariantToDoubleVisitor(),
critThresholds["CriticalLow"]);
double critHigh = variant_ns::visit(ipmi::VariantToDoubleVisitor(),
critThresholds["CriticalHigh"]);
if (critLow != 0)
{
critLow *= std::pow(10, info.scale - info.exponentR);
response->lowerCritical = static_cast<uint8_t>(
(critLow - info.scaledOffset) / info.coefficientM);
response->validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
}
if (critHigh != 0)
{
critHigh *= std::pow(10, info.scale - info.exponentR);
response->upperCritical = static_cast<uint8_t>(
(critHigh - info.scaledOffset) / info.coefficientM);
response->validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
}
}
ipmi_ret_t ipmi_sen_get_sensor_thresholds(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
if (*data_len != sizeof(uint8_t))
{
*data_len = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
auto sensorNum = *(reinterpret_cast<const uint8_t*>(request));
*data_len = 0;
const auto iter = sensors.find(sensorNum);
if (iter == sensors.end())
{
return IPMI_CC_SENSOR_INVALID;
}
const auto info = iter->second;
// Proceed only if the sensor value interface is implemented.
if (info.propertyInterfaces.find(valueInterface) ==
info.propertyInterfaces.end())
{
// return with valid mask as 0
return IPMI_CC_OK;
}
auto responseData =
reinterpret_cast<get_sdr::GetSensorThresholdsResponse*>(response);
try
{
getSensorThresholds(sensorNum, responseData);
}
catch (std::exception& e)
{
// Mask if the property is not present
responseData->validMask = 0;
}
*data_len = sizeof(get_sdr::GetSensorThresholdsResponse);
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_sen_wildcard(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
ipmi_ret_t rc = IPMI_CC_INVALID;
printf("IPMI S/E Wildcard Netfn:[0x%X], Cmd:[0x%X]\n", netfn, cmd);
*data_len = 0;
return rc;
}
ipmi_ret_t ipmi_sen_get_sdr_info(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
auto resp = static_cast<get_sdr_info::GetSdrInfoResp*>(response);
if (request == nullptr ||
get_sdr_info::request::get_count(request) == false)
{
// Get Sensor Count
resp->count = sensors.size() + frus.size() + entities.size();
}
else
{
resp->count = 1;
}
// Multiple LUNs not supported.
namespace response = get_sdr_info::response;
response::set_lun_present(0, &(resp->luns_and_dynamic_population));
response::set_lun_not_present(1, &(resp->luns_and_dynamic_population));
response::set_lun_not_present(2, &(resp->luns_and_dynamic_population));
response::set_lun_not_present(3, &(resp->luns_and_dynamic_population));
response::set_static_population(&(resp->luns_and_dynamic_population));
*data_len = SDR_INFO_RESP_SIZE;
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_sen_reserve_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
// A constant reservation ID is okay until we implement add/remove SDR.
const uint16_t reservation_id = 1;
*(uint16_t*)response = reservation_id;
*data_len = sizeof(uint16_t);
printf("Created new IPMI SDR reservation ID %d\n", *(uint16_t*)response);
return IPMI_CC_OK;
}
void setUnitFieldsForObject(const ipmi::sensor::Info* info,
get_sdr::SensorDataFullRecordBody* body)
{
namespace server = sdbusplus::xyz::openbmc_project::Sensor::server;
try
{
auto unit = server::Value::convertUnitFromString(info->unit);
// Unit strings defined in
// phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
switch (unit)
{
case server::Value::Unit::DegreesC:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
break;
case server::Value::Unit::RPMS:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
break;
case server::Value::Unit::Volts:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
break;
case server::Value::Unit::Meters:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
break;
case server::Value::Unit::Amperes:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
break;
case server::Value::Unit::Joules:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
break;
case server::Value::Unit::Watts:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
break;
default:
// Cannot be hit.
std::fprintf(stderr, "Unknown value unit type: = %s\n",
info->unit.c_str());
}
}
catch (const sdbusplus::exception::InvalidEnumString& e)
{
log<level::WARNING>("Warning: no unit provided for sensor!");
}
}
ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
const ipmi::sensor::Info* info,
ipmi_data_len_t data_len)
{
/* Functional sensor case */
if (isAnalogSensor(info->propertyInterfaces.begin()->first))
{
body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a %
/* Unit info */
setUnitFieldsForObject(info, body);
get_sdr::body::set_b(info->coefficientB, body);
get_sdr::body::set_m(info->coefficientM, body);
get_sdr::body::set_b_exp(info->exponentB, body);
get_sdr::body::set_r_exp(info->exponentR, body);
get_sdr::body::set_id_type(0b00, body); // 00 = unicode
}
/* ID string */
auto id_string = info->sensorNameFunc(*info);
if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
{
get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
}
else
{
get_sdr::body::set_id_strlen(id_string.length(), body);
}
strncpy(body->id_string, id_string.c_str(),
get_sdr::body::get_id_strlen(body));
return IPMI_CC_OK;
};
ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len)
{
auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
get_sdr::SensorDataFruRecord record{};
auto dataLength = 0;
auto fru = frus.begin();
uint8_t fruID{};
auto recordID = get_sdr::request::get_record_id(req);
fruID = recordID - FRU_RECORD_ID_START;
fru = frus.find(fruID);
if (fru == frus.end())
{
return IPMI_CC_SENSOR_INVALID;
}
/* Header */
get_sdr::header::set_record_id(recordID, &(record.header));
record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
record.header.record_length = sizeof(record.key) + sizeof(record.body);
/* Key */
record.key.fruID = fruID;
record.key.accessLun |= IPMI_LOGICAL_FRU;
record.key.deviceAddress = BMCSlaveAddress;
/* Body */
record.body.entityID = fru->second[0].entityID;
record.body.entityInstance = fru->second[0].entityInstance;
record.body.deviceType = fruInventoryDevice;
record.body.deviceTypeModifier = IPMIFruInventory;
/* Device ID string */
auto deviceID =
fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
fru->second[0].path.length());
if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
{
get_sdr::body::set_device_id_strlen(
get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
}
else
{
get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
}
strncpy(record.body.deviceID, deviceID.c_str(),
get_sdr::body::get_device_id_strlen(&(record.body)));
if (++fru == frus.end())
{
// we have reached till end of fru, so assign the next record id to
// 512(Max fru ID = 511) + Entity Record ID(may start with 0).
auto next_record_id =
(entities.size()) ? entities.begin()->first + ENTITY_RECORD_ID_START
: END_OF_RECORD;
get_sdr::response::set_next_record_id(next_record_id, resp);
}
else
{
get_sdr::response::set_next_record_id(
(FRU_RECORD_ID_START + fru->first), resp);
}
// Check for invalid offset size
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
*data_len = dataLength;
*data_len += 2; // additional 2 bytes for next record ID
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len)
{
auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
get_sdr::SensorDataEntityRecord record{};
auto dataLength = 0;
auto entity = entities.begin();
uint8_t entityRecordID;
auto recordID = get_sdr::request::get_record_id(req);
entityRecordID = recordID - ENTITY_RECORD_ID_START;
entity = entities.find(entityRecordID);
if (entity == entities.end())
{
return IPMI_CC_SENSOR_INVALID;
}
/* Header */
get_sdr::header::set_record_id(recordID, &(record.header));
record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
record.header.record_length = sizeof(record.key) + sizeof(record.body);
/* Key */
record.key.containerEntityId = entity->second.containerEntityId;
record.key.containerEntityInstance = entity->second.containerEntityInstance;
get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
&(record.key));
record.key.entityId1 = entity->second.containedEntities[0].first;
record.key.entityInstance1 = entity->second.containedEntities[0].second;
/* Body */
record.body.entityId2 = entity->second.containedEntities[1].first;
record.body.entityInstance2 = entity->second.containedEntities[1].second;
record.body.entityId3 = entity->second.containedEntities[2].first;
record.body.entityInstance3 = entity->second.containedEntities[2].second;
record.body.entityId4 = entity->second.containedEntities[3].first;
record.body.entityInstance4 = entity->second.containedEntities[3].second;
if (++entity == entities.end())
{
get_sdr::response::set_next_record_id(END_OF_RECORD,
resp); // last record
}
else
{
get_sdr::response::set_next_record_id(
(ENTITY_RECORD_ID_START + entity->first), resp);
}
// Check for invalid offset size
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
*data_len = dataLength;
*data_len += 2; // additional 2 bytes for next record ID
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
ipmi_ret_t ret = IPMI_CC_OK;
get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
get_sdr::SensorDataFullRecord record = {0};
if (req != NULL)
{
// Note: we use an iterator so we can provide the next ID at the end of
// the call.
auto sensor = sensors.begin();
auto recordID = get_sdr::request::get_record_id(req);
// At the beginning of a scan, the host side will send us id=0.
if (recordID != 0)
{
// recordID 0 to 255 means it is a FULL record.
// recordID 256 to 511 means it is a FRU record.
// recordID greater then 511 means it is a Entity Association
// record. Currently we are supporting three record types: FULL
// record, FRU record and Enttiy Association record.
if (recordID >= ENTITY_RECORD_ID_START)
{
return ipmi_entity_get_sdr(request, response, data_len);
}
else if (recordID >= FRU_RECORD_ID_START &&
recordID < ENTITY_RECORD_ID_START)
{
return ipmi_fru_get_sdr(request, response, data_len);
}
else
{
sensor = sensors.find(recordID);
if (sensor == sensors.end())
{
return IPMI_CC_SENSOR_INVALID;
}
}
}
uint8_t sensor_id = sensor->first;
/* Header */
get_sdr::header::set_record_id(sensor_id, &(record.header));
record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
record.header.record_length = sizeof(get_sdr::SensorDataFullRecord);
/* Key */
get_sdr::key::set_owner_id_bmc(&(record.key));
record.key.sensor_number = sensor_id;
/* Body */
record.body.entity_id = sensor->second.entityType;
record.body.sensor_type = sensor->second.sensorType;
record.body.event_reading_type = sensor->second.sensorReadingType;
record.body.entity_instance = sensor->second.instance;
if (ipmi::sensor::Mutability::Write ==
(sensor->second.mutability & ipmi::sensor::Mutability::Write))
{
get_sdr::body::init_settable_state(true, &(record.body));
}
// Set the type-specific details given the DBus interface
ret = populate_record_from_dbus(&(record.body), &(sensor->second),
data_len);
if (++sensor == sensors.end())
{
// we have reached till end of sensor, so assign the next record id
// to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
auto next_record_id =
(frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START
: END_OF_RECORD;
get_sdr::response::set_next_record_id(next_record_id, resp);
}
else
{
get_sdr::response::set_next_record_id(sensor->first, resp);
}
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
// data_len will ultimately be the size of the record, plus
// the size of the next record ID:
*data_len = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<uint8_t*>(&record) + req->offset,
*data_len);
// data_len should include the LSB and MSB:
*data_len +=
sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb);
}
return ret;
}
static bool isFromSystemChannel()
{
// TODO we could not figure out where the request is from based on IPMI
// command handler parameters. because of it, we can not differentiate
// request from SMS/SMM or IPMB channel
return true;
}
ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t context)
{
uint16_t generatorID;
size_t count;
bool assert = true;
std::string sensorPath;
size_t paraLen = *dataLen;
PlatformEventRequest* req;
*dataLen = 0;
if ((paraLen < selSystemEventSizeWith1Bytes) ||
(paraLen > selSystemEventSizeWith3Bytes))
{
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
if (isFromSystemChannel())
{ // first byte for SYSTEM Interface is Generator ID
// +1 to get common struct
req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
// Capture the generator ID
generatorID = *reinterpret_cast<uint8_t*>(request);
// Platform Event usually comes from other firmware, like BIOS.
// Unlike BMC sensor, it does not have BMC DBUS sensor path.
sensorPath = "System";
}
else
{
req = reinterpret_cast<PlatformEventRequest*>(request);
// TODO GenratorID for IPMB is combination of RqSA and RqLUN
generatorID = 0xff;
sensorPath = "IPMB";
}
// Content of event data field depends on sensor class.
// When data0 bit[5:4] is non-zero, valid data counts is 3.
// When data0 bit[7:6] is non-zero, valid data counts is 2.
if (((req->data[0] & byte3EnableMask) != 0 &&
paraLen < selSystemEventSizeWith3Bytes) ||
((req->data[0] & byte2EnableMask) != 0 &&
paraLen < selSystemEventSizeWith2Bytes))
{
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
// Count bytes of Event Data
if ((req->data[0] & byte3EnableMask) != 0)
{
count = 3;
}
else if ((req->data[0] & byte2EnableMask) != 0)
{
count = 2;
}
else
{
count = 1;
}
assert = req->eventDirectionType & directionMask ? false : true;
std::vector<uint8_t> eventData(req->data, req->data + count);
sdbusplus::bus::bus dbus(bus);
std::string service =
ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath);
sdbusplus::message::message writeSEL = dbus.new_method_call(
service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
generatorID);
try
{
dbus.call(writeSEL);
}
catch (sdbusplus::exception_t& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
return IPMI_CC_UNSPECIFIED_ERROR;
}
return IPMI_CC_OK;
}
void register_netfn_sen_functions()
{
// <Wildcard Command>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_WILDCARD, nullptr,
ipmi_sen_wildcard, PRIVILEGE_USER);
// <Platform Event Message>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
// <Get Sensor Type>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_TYPE, nullptr,
ipmi_sen_get_sensor_type, PRIVILEGE_USER);
// <Set Sensor Reading and Event Status>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_SET_SENSOR, nullptr,
ipmi_sen_set_sensor, PRIVILEGE_OPERATOR);
// <Get Sensor Reading>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_READING, nullptr,
ipmi_sen_get_sensor_reading, PRIVILEGE_USER);
// <Reserve Device SDR Repository>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_RESERVE_DEVICE_SDR_REPO,
nullptr, ipmi_sen_reserve_sdr, PRIVILEGE_USER);
// <Get Device SDR Info>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR_INFO, nullptr,
ipmi_sen_get_sdr_info, PRIVILEGE_USER);
// <Get Device SDR>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
ipmi_sen_get_sdr, PRIVILEGE_USER);
// <Get Sensor Thresholds>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_THRESHOLDS,
nullptr, ipmi_sen_get_sensor_thresholds,
PRIVILEGE_USER);
return;
}