Norman James | 9e9eba1 | 2015-11-19 16:05:57 -0600 | [diff] [blame] | 1 | /* Copyright 2013-2014 IBM Corp. |
| 2 | * |
| 3 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | * you may not use this file except in compliance with the License. |
| 5 | * You may obtain a copy of the License at |
| 6 | * |
| 7 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | * |
| 9 | * Unless required by applicable law or agreed to in writing, software |
| 10 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or |
| 12 | * implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | #include <stdint.h> |
| 17 | #include <stdbool.h> |
| 18 | #include <stdlib.h> |
| 19 | #include <errno.h> |
| 20 | #include <stdio.h> |
| 21 | #include <string.h> |
| 22 | |
| 23 | #include <libflash/libflash.h> |
| 24 | #include <libflash/libflash-priv.h> |
| 25 | |
| 26 | #include "ast.h" |
| 27 | |
| 28 | #ifndef __unused |
| 29 | #define __unused __attribute__((unused)) |
| 30 | #endif |
| 31 | |
| 32 | #define CALIBRATE_BUF_SIZE 16384 |
| 33 | |
| 34 | struct ast_sf_ctrl { |
| 35 | /* We have 2 controllers, one for the BMC flash, one for the PNOR */ |
| 36 | uint8_t type; |
| 37 | |
| 38 | /* Address and previous value of the ctrl register */ |
| 39 | uint32_t ctl_reg; |
| 40 | |
| 41 | /* Control register value for normal commands */ |
| 42 | uint32_t ctl_val; |
| 43 | |
| 44 | /* Control register value for (fast) reads */ |
| 45 | uint32_t ctl_read_val; |
| 46 | |
| 47 | /* Flash read timing register */ |
| 48 | uint32_t fread_timing_reg; |
| 49 | uint32_t fread_timing_val; |
| 50 | |
| 51 | /* Address of the flash mapping */ |
| 52 | uint32_t flash; |
| 53 | |
| 54 | /* Current 4b mode */ |
| 55 | bool mode_4b; |
| 56 | |
| 57 | /* Callbacks */ |
| 58 | struct spi_flash_ctrl ops; |
| 59 | }; |
| 60 | |
| 61 | static uint32_t ast_ahb_freq; |
| 62 | |
| 63 | static const uint32_t ast_ct_hclk_divs[] = { |
| 64 | 0xf, /* HCLK */ |
| 65 | 0x7, /* HCLK/2 */ |
| 66 | 0xe, /* HCLK/3 */ |
| 67 | 0x6, /* HCLK/4 */ |
| 68 | 0xd, /* HCLK/5 */ |
| 69 | }; |
| 70 | |
| 71 | static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd) |
| 72 | { |
| 73 | /* Switch to user mode, CE# dropped */ |
| 74 | ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg); |
| 75 | |
| 76 | /* user mode, CE# active */ |
| 77 | ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg); |
| 78 | |
| 79 | /* write cmd */ |
| 80 | return ast_copy_to_ahb(ct->flash, &cmd, 1); |
| 81 | } |
| 82 | |
| 83 | static void ast_sf_end_cmd(struct ast_sf_ctrl *ct) |
| 84 | { |
| 85 | /* clear CE# */ |
| 86 | ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg); |
| 87 | |
| 88 | /* Switch back to read mode */ |
| 89 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 90 | } |
| 91 | |
| 92 | static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr) |
| 93 | { |
| 94 | const void *ap; |
| 95 | |
| 96 | /* Layout address MSB first in memory */ |
| 97 | addr = cpu_to_be32(addr); |
| 98 | |
| 99 | /* Send the right amount of bytes */ |
| 100 | ap = (char *)&addr; |
| 101 | |
| 102 | if (ct->mode_4b) |
| 103 | return ast_copy_to_ahb(ct->flash, ap, 4); |
| 104 | else |
| 105 | return ast_copy_to_ahb(ct->flash, ap + 1, 3); |
| 106 | } |
| 107 | |
| 108 | static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd, |
| 109 | bool has_addr, uint32_t addr, void *buffer, |
| 110 | uint32_t size) |
| 111 | { |
| 112 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 113 | int rc; |
| 114 | |
| 115 | rc = ast_sf_start_cmd(ct, cmd); |
| 116 | if (rc) |
| 117 | goto bail; |
| 118 | if (has_addr) { |
| 119 | rc = ast_sf_send_addr(ct, addr); |
| 120 | if (rc) |
| 121 | goto bail; |
| 122 | } |
| 123 | if (buffer && size) |
| 124 | rc = ast_copy_from_ahb(buffer, ct->flash, size); |
| 125 | bail: |
| 126 | ast_sf_end_cmd(ct); |
| 127 | return rc; |
| 128 | } |
| 129 | |
| 130 | static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd, |
| 131 | bool has_addr, uint32_t addr, const void *buffer, |
| 132 | uint32_t size) |
| 133 | { |
| 134 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 135 | int rc; |
| 136 | |
| 137 | rc = ast_sf_start_cmd(ct, cmd); |
| 138 | if (rc) |
| 139 | goto bail; |
| 140 | if (has_addr) { |
| 141 | rc = ast_sf_send_addr(ct, addr); |
| 142 | if (rc) |
| 143 | goto bail; |
| 144 | } |
| 145 | if (buffer && size) |
| 146 | rc = ast_copy_to_ahb(ct->flash, buffer, size); |
| 147 | bail: |
| 148 | ast_sf_end_cmd(ct); |
| 149 | return rc; |
| 150 | } |
| 151 | |
| 152 | static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable) |
| 153 | { |
| 154 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 155 | uint32_t ce_ctrl = 0; |
| 156 | |
| 157 | if (ct->type == AST_SF_TYPE_BMC && ct->ops.finfo->size > 0x1000000) |
| 158 | ce_ctrl = ast_ahb_readl(BMC_SPI_FCTL_CE_CTRL); |
| 159 | |
| 160 | /* |
| 161 | * We update the "old" value as well since when quitting |
| 162 | * we don't restore the mode of the flash itself so we need |
| 163 | * to leave the controller in a compatible setup |
| 164 | */ |
| 165 | if (enable) { |
| 166 | ct->ctl_val |= 0x2000; |
| 167 | ct->ctl_read_val |= 0x2000; |
| 168 | ce_ctrl |= 0x1; |
| 169 | } else { |
| 170 | ct->ctl_val &= ~0x2000; |
| 171 | ct->ctl_read_val &= ~0x2000; |
| 172 | ce_ctrl &= ~0x1; |
| 173 | } |
| 174 | ct->mode_4b = enable; |
| 175 | |
| 176 | /* Update read mode */ |
| 177 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 178 | |
| 179 | if (ce_ctrl) |
| 180 | ast_ahb_writel(ce_ctrl, BMC_SPI_FCTL_CE_CTRL); |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos, |
| 186 | void *buf, uint32_t len) |
| 187 | { |
| 188 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 189 | |
| 190 | /* |
| 191 | * We are in read mode by default. We don't yet support fancy |
| 192 | * things like fast read or X2 mode |
| 193 | */ |
| 194 | return ast_copy_from_ahb(buf, ct->flash + pos, len); |
| 195 | } |
| 196 | |
| 197 | static void ast_get_ahb_freq(void) |
| 198 | { |
| 199 | static const uint32_t cpu_freqs_24_48[] = { |
| 200 | 384000000, |
| 201 | 360000000, |
| 202 | 336000000, |
| 203 | 408000000 |
| 204 | }; |
| 205 | static const uint32_t cpu_freqs_25[] = { |
| 206 | 400000000, |
| 207 | 375000000, |
| 208 | 350000000, |
| 209 | 425000000 |
| 210 | }; |
| 211 | static const uint32_t ahb_div[] = { 1, 2, 4, 3 }; |
| 212 | uint32_t strap, cpu_clk, div; |
| 213 | |
| 214 | if (ast_ahb_freq) |
| 215 | return; |
| 216 | |
| 217 | /* HW strapping gives us the CPU freq and AHB divisor */ |
| 218 | strap = ast_ahb_readl(SCU_HW_STRAPPING); |
| 219 | if (strap & 0x00800000) { |
| 220 | FL_DBG("AST: CLKIN 25Mhz\n"); |
| 221 | cpu_clk = cpu_freqs_25[(strap >> 8) & 3]; |
| 222 | } else { |
| 223 | FL_DBG("AST: CLKIN 24/48Mhz\n"); |
| 224 | cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3]; |
| 225 | } |
| 226 | FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000); |
| 227 | div = ahb_div[(strap >> 10) & 3]; |
| 228 | ast_ahb_freq = cpu_clk / div; |
| 229 | FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000); |
| 230 | } |
| 231 | |
| 232 | static int ast_sf_check_reads(struct ast_sf_ctrl *ct, |
| 233 | const uint8_t *golden_buf, uint8_t *test_buf) |
| 234 | { |
| 235 | int i, rc; |
| 236 | |
| 237 | for (i = 0; i < 10; i++) { |
| 238 | rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE); |
| 239 | if (rc) |
| 240 | return rc; |
| 241 | if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) |
| 242 | return FLASH_ERR_VERIFY_FAILURE; |
| 243 | } |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv, |
| 248 | const uint8_t *golden_buf, uint8_t *test_buf) |
| 249 | { |
| 250 | int i, rc; |
| 251 | int good_pass = -1, pass_count = 0; |
| 252 | uint32_t shift = (hdiv - 1) << 2; |
| 253 | uint32_t mask = ~(0xfu << shift); |
| 254 | |
| 255 | #define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) |
| 256 | |
| 257 | /* Try HCLK delay 0..5, each one with/without delay and look for a |
| 258 | * good pair. |
| 259 | */ |
| 260 | for (i = 0; i < 12; i++) { |
| 261 | bool pass; |
| 262 | |
| 263 | ct->fread_timing_val &= mask; |
| 264 | ct->fread_timing_val |= FREAD_TPASS(i) << shift; |
| 265 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg); |
| 266 | rc = ast_sf_check_reads(ct, golden_buf, test_buf); |
| 267 | if (rc && rc != FLASH_ERR_VERIFY_FAILURE) |
| 268 | return rc; |
| 269 | pass = (rc == 0); |
| 270 | FL_DBG(" * [%08x] %d HCLK delay, %dns DI delay : %s\n", |
| 271 | ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL"); |
| 272 | if (pass) { |
| 273 | pass_count++; |
| 274 | if (pass_count == 3) { |
| 275 | good_pass = i - 1; |
| 276 | break; |
| 277 | } |
| 278 | } else |
| 279 | pass_count = 0; |
| 280 | } |
| 281 | |
| 282 | /* No good setting for this frequency */ |
| 283 | if (good_pass < 0) |
| 284 | return FLASH_ERR_VERIFY_FAILURE; |
| 285 | |
| 286 | /* We have at least one pass of margin, let's use first pass */ |
| 287 | ct->fread_timing_val &= mask; |
| 288 | ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift; |
| 289 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg); |
| 290 | FL_DBG("AST: * -> good is pass %d [0x%08x]\n", |
| 291 | good_pass, ct->fread_timing_val); |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size) |
| 296 | { |
| 297 | const uint32_t *tb32 = (const uint32_t *)test_buf; |
| 298 | uint32_t i, cnt = 0; |
| 299 | |
| 300 | /* We check if we have enough words that are neither all 0 |
| 301 | * nor all 1's so the calibration can be considered valid. |
| 302 | * |
| 303 | * I use an arbitrary threshold for now of 64 |
| 304 | */ |
| 305 | size >>= 2; |
| 306 | for (i = 0; i < size; i++) { |
| 307 | if (tb32[i] != 0 && tb32[i] != 0xffffffff) |
| 308 | cnt++; |
| 309 | } |
| 310 | return cnt >= 64; |
| 311 | } |
| 312 | |
| 313 | static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct, |
| 314 | struct flash_info *info __unused, |
| 315 | uint32_t max_freq) |
| 316 | { |
| 317 | uint8_t *golden_buf, *test_buf; |
| 318 | int i, rc, best_div = -1; |
| 319 | uint32_t save_read_val = ct->ctl_read_val; |
| 320 | |
| 321 | test_buf = malloc(CALIBRATE_BUF_SIZE * 2); |
| 322 | golden_buf = test_buf + CALIBRATE_BUF_SIZE; |
| 323 | |
| 324 | /* We start with the dumbest setting and read some data */ |
| 325 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) | |
| 326 | (0x00 << 28) | /* Single bit */ |
| 327 | (0x00 << 24) | /* CE# max */ |
| 328 | (0x03 << 16) | /* use normal reads */ |
| 329 | (0x00 << 8) | /* HCLK/16 */ |
| 330 | (0x00 << 6) | /* no dummy cycle */ |
| 331 | (0x00); /* normal read */ |
| 332 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 333 | |
| 334 | rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE); |
| 335 | if (rc) { |
| 336 | free(test_buf); |
| 337 | return rc; |
| 338 | } |
| 339 | |
| 340 | /* Establish our read mode with freq field set to 0 */ |
| 341 | ct->ctl_read_val = save_read_val & 0xfffff0ff; |
| 342 | |
| 343 | /* Check if calibration data is suitable */ |
| 344 | if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) { |
| 345 | FL_INF("AST: Calibration area too uniform, " |
| 346 | "using low speed\n"); |
| 347 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 348 | free(test_buf); |
| 349 | return 0; |
| 350 | } |
| 351 | |
| 352 | /* Now we iterate the HCLK dividers until we find our breaking point */ |
| 353 | for (i = 5; i > 0; i--) { |
| 354 | uint32_t tv, freq; |
| 355 | |
| 356 | /* Compare timing to max */ |
| 357 | freq = ast_ahb_freq / i; |
| 358 | if (freq >= max_freq) |
| 359 | continue; |
| 360 | |
| 361 | /* Set the timing */ |
| 362 | tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8); |
| 363 | ast_ahb_writel(tv, ct->ctl_reg); |
| 364 | FL_DBG("AST: Trying HCLK/%d...\n", i); |
| 365 | rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf); |
| 366 | |
| 367 | /* Some other error occurred, bail out */ |
| 368 | if (rc && rc != FLASH_ERR_VERIFY_FAILURE) { |
| 369 | free(test_buf); |
| 370 | return rc; |
| 371 | } |
| 372 | if (rc == 0) |
| 373 | best_div = i; |
| 374 | } |
| 375 | free(test_buf); |
| 376 | |
| 377 | /* Nothing found ? */ |
| 378 | if (best_div < 0) |
| 379 | FL_ERR("AST: No good frequency, using dumb slow\n"); |
| 380 | else { |
| 381 | FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div); |
| 382 | ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8); |
| 383 | } |
| 384 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 385 | |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq) |
| 390 | { |
| 391 | int i; |
| 392 | |
| 393 | /* It appears that running commands at HCLK/2 on some micron |
| 394 | * chips results in occasionally reads of bogus status (that |
| 395 | * or unrelated chip hangs). |
| 396 | * |
| 397 | * Since we cannot calibrate properly the reads for commands, |
| 398 | * instead, let's limit our SPI frequency to HCLK/4 to stay |
| 399 | * on the safe side of things |
| 400 | */ |
| 401 | #define MIN_CMD_FREQ 4 |
| 402 | for (i = MIN_CMD_FREQ; i <= 5; i++) { |
| 403 | uint32_t freq = ast_ahb_freq / i; |
| 404 | if (freq >= max_freq) |
| 405 | continue; |
| 406 | *ctl_val |= (ast_ct_hclk_divs[i - 1] << 8); |
| 407 | return i; |
| 408 | } |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info) |
| 413 | { |
| 414 | int rc, div __unused; |
| 415 | uint8_t srcr[2]; |
| 416 | |
| 417 | /* |
| 418 | * Those Macronix chips support dual reads at 104Mhz |
| 419 | * and dual IO at 84Mhz with 4 dummies. |
| 420 | * |
| 421 | * Our calibration algo should give us something along |
| 422 | * the lines of HCLK/3 (HCLK/2 seems to work sometimes |
| 423 | * but appears to be fairly unreliable) which is 64Mhz |
| 424 | * |
| 425 | * So we chose dual IO mode. |
| 426 | * |
| 427 | * The CE# inactive width for reads must be 7ns, we set it |
| 428 | * to 3T which is about 15ns at the fastest speed we support |
| 429 | * HCLK/2) as I've had issue with smaller values. |
| 430 | * |
| 431 | * For write and program it's 30ns so let's set the value |
| 432 | * for normal ops to 6T. |
| 433 | * |
| 434 | * Preserve the current 4b mode. |
| 435 | */ |
| 436 | FL_DBG("AST: Setting up Macronix...\n"); |
| 437 | |
| 438 | /* |
| 439 | * Read the status and config registers |
| 440 | */ |
| 441 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1); |
| 442 | if (rc != 0) { |
| 443 | FL_ERR("AST: Failed to read status\n"); |
| 444 | return rc; |
| 445 | } |
| 446 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1); |
| 447 | if (rc != 0) { |
| 448 | FL_ERR("AST: Failed to read configuration\n"); |
| 449 | return rc; |
| 450 | } |
| 451 | |
| 452 | FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]); |
| 453 | |
| 454 | /* Switch to 8 dummy cycles to enable 104Mhz operations */ |
| 455 | srcr[1] = (srcr[1] & 0x3f) | 0x80; |
| 456 | |
| 457 | rc = fl_wren(&ct->ops); |
| 458 | if (rc) { |
| 459 | FL_ERR("AST: Failed to WREN for Macronix config\n"); |
| 460 | return rc; |
| 461 | } |
| 462 | |
| 463 | rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2); |
| 464 | if (rc != 0) { |
| 465 | FL_ERR("AST: Failed to write Macronix config\n"); |
| 466 | return rc; |
| 467 | } |
| 468 | rc = fl_sync_wait_idle(&ct->ops);; |
| 469 | if (rc != 0) { |
| 470 | FL_ERR("AST: Failed waiting for config write\n"); |
| 471 | return rc; |
| 472 | } |
| 473 | |
| 474 | FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]); |
| 475 | |
| 476 | /* Use 2READ */ |
| 477 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) | |
| 478 | (0x03 << 28) | /* Dual IO */ |
| 479 | (0x0d << 24) | /* CE# width 3T */ |
| 480 | (0xbb << 16) | /* 2READ command */ |
| 481 | (0x00 << 8) | /* HCLK/16 (optimize later) */ |
| 482 | (0x02 << 6) | /* 2 bytes dummy cycle (8 clocks) */ |
| 483 | (0x01); /* fast read */ |
| 484 | |
| 485 | /* Configure SPI flash read timing */ |
| 486 | rc = ast_sf_optimize_reads(ct, info, 104000000); |
| 487 | if (rc) { |
| 488 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc); |
| 489 | return rc; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * For other commands and writes also increase the SPI clock |
| 494 | * to HCLK/2 since the chip supports up to 133Mhz and set |
| 495 | * CE# inactive to 6T. We request a timing that is 20% below |
| 496 | * the limit of the chip, so about 106Mhz which should fit. |
| 497 | */ |
| 498 | ct->ctl_val = (ct->ctl_val & 0x2000) | |
| 499 | (0x00 << 28) | /* Single bit */ |
| 500 | (0x0a << 24) | /* CE# width 6T (b1010) */ |
| 501 | (0x00 << 16) | /* no command */ |
| 502 | (0x00 << 8) | /* HCLK/16 (done later) */ |
| 503 | (0x00 << 6) | /* no dummy cycle */ |
| 504 | (0x00); /* normal read */ |
| 505 | |
| 506 | div = ast_sf_get_hclk(&ct->ctl_val, 106000000); |
| 507 | FL_DBG("AST: Command timing set to HCLK/%d\n", div); |
| 508 | |
| 509 | /* Update chip with current read config */ |
| 510 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info) |
| 515 | { |
| 516 | int rc, div __unused; |
| 517 | |
| 518 | FL_DBG("AST: Setting up Windbond...\n"); |
| 519 | |
| 520 | /* |
| 521 | * This Windbond chip support dual reads at 104Mhz |
| 522 | * with 8 dummy cycles. |
| 523 | * |
| 524 | * The CE# inactive width for reads must be 10ns, we set it |
| 525 | * to 3T which is about 15.6ns. |
| 526 | */ |
| 527 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) | |
| 528 | (0x02 << 28) | /* Dual bit data only */ |
| 529 | (0x0e << 24) | /* CE# width 2T (b1110) */ |
| 530 | (0x3b << 16) | /* DREAD command */ |
| 531 | (0x00 << 8) | /* HCLK/16 */ |
| 532 | (0x01 << 6) | /* 1-byte dummy cycle */ |
| 533 | (0x01); /* fast read */ |
| 534 | |
| 535 | /* Configure SPI flash read timing */ |
| 536 | rc = ast_sf_optimize_reads(ct, info, 104000000); |
| 537 | if (rc) { |
| 538 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc); |
| 539 | return rc; |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * For other commands and writes also increase the SPI clock |
| 544 | * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive |
| 545 | * for write and erase is 50ns so let's set it to 10T. |
| 546 | */ |
| 547 | ct->ctl_val = (ct->ctl_read_val & 0x2000) | |
| 548 | (0x00 << 28) | /* Single bit */ |
| 549 | (0x06 << 24) | /* CE# width 10T (b0110) */ |
| 550 | (0x00 << 16) | /* no command */ |
| 551 | (0x00 << 8) | /* HCLK/16 */ |
| 552 | (0x00 << 6) | /* no dummy cycle */ |
| 553 | (0x01); /* fast read */ |
| 554 | |
| 555 | div = ast_sf_get_hclk(&ct->ctl_val, 106000000); |
| 556 | FL_DBG("AST: Command timing set to HCLK/%d\n", div); |
| 557 | |
| 558 | /* Update chip with current read config */ |
| 559 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info) |
| 564 | { |
| 565 | uint8_t vconf, ext_id[6]; |
| 566 | int rc, div __unused; |
| 567 | |
| 568 | FL_DBG("AST: Setting up Micron...\n"); |
| 569 | |
| 570 | /* |
| 571 | * Read the extended chip ID to try to detect old vs. new |
| 572 | * flashes since old Micron flashes have a lot of issues |
| 573 | */ |
| 574 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6); |
| 575 | if (rc != 0) { |
| 576 | FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n"); |
| 577 | return 0; |
| 578 | } |
| 579 | /* Check ID matches expectations */ |
| 580 | if (ext_id[0] != ((info->id >> 16) & 0xff) || |
| 581 | ext_id[1] != ((info->id >> 8) & 0xff) || |
| 582 | ext_id[2] != ((info->id ) & 0xff)) { |
| 583 | FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n"); |
| 584 | return 0; |
| 585 | } |
| 586 | FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]); |
| 587 | |
| 588 | /* Check for old (<45nm) chips, don't try to be fancy on those */ |
| 589 | if (!(ext_id[4] & 0x40)) { |
| 590 | FL_DBG("AST: Old chip, using dumb timings\n"); |
| 591 | goto dumb; |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * Read the micron specific volatile configuration reg |
| 596 | */ |
| 597 | rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1); |
| 598 | if (rc != 0) { |
| 599 | FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n"); |
| 600 | goto dumb; |
| 601 | } |
| 602 | FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf); |
| 603 | |
| 604 | /* Switch to 8 dummy cycles (we might be able to operate with 4 |
| 605 | * but let's keep some margin |
| 606 | */ |
| 607 | vconf = (vconf & 0x0f) | 0x80; |
| 608 | |
| 609 | rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1); |
| 610 | if (rc != 0) { |
| 611 | FL_ERR("AST: Failed to write Micron vconf, " |
| 612 | " sticking to dumb speed\n"); |
| 613 | goto dumb; |
| 614 | } |
| 615 | rc = fl_sync_wait_idle(&ct->ops);; |
| 616 | if (rc != 0) { |
| 617 | FL_ERR("AST: Failed waiting for config write\n"); |
| 618 | return rc; |
| 619 | } |
| 620 | FL_DBG("AST: Updated to : 0x%02x\n", vconf); |
| 621 | |
| 622 | /* |
| 623 | * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz |
| 624 | * |
| 625 | * The CE# inactive width for reads must be 20ns, we set it |
| 626 | * to 4T which is about 20.8ns. |
| 627 | */ |
| 628 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) | |
| 629 | (0x03 << 28) | /* Single bit */ |
| 630 | (0x0c << 24) | /* CE# 4T */ |
| 631 | (0xbb << 16) | /* 2READ command */ |
| 632 | (0x00 << 8) | /* HCLK/16 (optimize later) */ |
| 633 | (0x02 << 6) | /* 8 dummy cycles (2 bytes) */ |
| 634 | (0x01); /* fast read */ |
| 635 | |
| 636 | /* Configure SPI flash read timing */ |
| 637 | rc = ast_sf_optimize_reads(ct, info, 133000000); |
| 638 | if (rc) { |
| 639 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc); |
| 640 | return rc; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * For other commands and writes also increase the SPI clock |
| 645 | * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive |
| 646 | * for write and erase is 50ns so let's set it to 10T. |
| 647 | */ |
| 648 | ct->ctl_val = (ct->ctl_read_val & 0x2000) | |
| 649 | (0x00 << 28) | /* Single bit */ |
| 650 | (0x06 << 24) | /* CE# width 10T (b0110) */ |
| 651 | (0x00 << 16) | /* no command */ |
| 652 | (0x00 << 8) | /* HCLK/16 */ |
| 653 | (0x00 << 6) | /* no dummy cycle */ |
| 654 | (0x00); /* norm read */ |
| 655 | |
| 656 | div = ast_sf_get_hclk(&ct->ctl_val, 133000000); |
| 657 | FL_DBG("AST: Command timing set to HCLK/%d\n", div); |
| 658 | |
| 659 | /* Update chip with current read config */ |
| 660 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 661 | |
| 662 | return 0; |
| 663 | |
| 664 | dumb: |
| 665 | ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) | |
| 666 | (0x00 << 28) | /* Single bit */ |
| 667 | (0x00 << 24) | /* CE# max */ |
| 668 | (0x03 << 16) | /* use normal reads */ |
| 669 | (0x06 << 8) | /* HCLK/4 */ |
| 670 | (0x00 << 6) | /* no dummy cycle */ |
| 671 | (0x00); /* normal read */ |
| 672 | |
| 673 | /* Update chip with current read config */ |
| 674 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 675 | |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize) |
| 680 | { |
| 681 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 682 | struct flash_info *info = ctrl->finfo; |
| 683 | |
| 684 | (void)tsize; |
| 685 | |
| 686 | /* |
| 687 | * Configure better timings and read mode for known |
| 688 | * flash chips |
| 689 | */ |
| 690 | switch(info->id) { |
| 691 | case 0xc22018: /* MX25L12835F */ |
| 692 | case 0xc22019: /* MX25L25635F */ |
| 693 | case 0xc2201a: /* MX66L51235F */ |
| 694 | return ast_sf_setup_macronix(ct, info); |
| 695 | case 0xef4018: /* W25Q128BV */ |
| 696 | return ast_sf_setup_winbond(ct, info); |
| 697 | case 0x20ba20: /* MT25Qx512xx */ |
| 698 | return ast_sf_setup_micron(ct, info); |
| 699 | } |
| 700 | /* No special tuning */ |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct) |
| 705 | { |
| 706 | uint32_t reg; |
| 707 | |
| 708 | ct->ctl_reg = PNOR_SPI_FCTL_CTRL; |
| 709 | ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING; |
| 710 | ct->flash = PNOR_FLASH_BASE; |
| 711 | |
| 712 | /* Enable writing to the controller */ |
| 713 | reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF); |
| 714 | if (reg == 0xffffffff) { |
| 715 | FL_ERR("AST_SF: Failed read from controller config\n"); |
| 716 | return false; |
| 717 | } |
| 718 | ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF); |
| 719 | |
| 720 | /* |
| 721 | * Snapshot control reg and sanitize it for our |
| 722 | * use, switching to 1-bit mode, clearing user |
| 723 | * mode if set, etc... |
| 724 | * |
| 725 | * Also configure SPI clock to something safe |
| 726 | * like HCLK/8 (24Mhz) |
| 727 | */ |
| 728 | ct->ctl_val = ast_ahb_readl(ct->ctl_reg); |
| 729 | if (ct->ctl_val == 0xffffffff) { |
| 730 | FL_ERR("AST_SF: Failed read from controller control\n"); |
| 731 | return false; |
| 732 | } |
| 733 | |
| 734 | ct->ctl_val = (ct->ctl_val & 0x2000) | |
| 735 | (0x00 << 28) | /* Single bit */ |
| 736 | (0x00 << 24) | /* CE# width 16T */ |
| 737 | (0x00 << 16) | /* no command */ |
| 738 | (0x04 << 8) | /* HCLK/8 */ |
| 739 | (0x00 << 6) | /* no dummy cycle */ |
| 740 | (0x00); /* normal read */ |
| 741 | |
| 742 | /* Initial read mode is default */ |
| 743 | ct->ctl_read_val = ct->ctl_val; |
| 744 | |
| 745 | /* Initial read timings all 0 */ |
| 746 | ct->fread_timing_val = 0; |
| 747 | |
| 748 | /* Configure for read */ |
| 749 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 750 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg); |
| 751 | |
| 752 | if (ct->ctl_val & 0x2000) |
| 753 | ct->mode_4b = true; |
| 754 | else |
| 755 | ct->mode_4b = false; |
| 756 | |
| 757 | return true; |
| 758 | } |
| 759 | |
| 760 | static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct) |
| 761 | { |
| 762 | ct->ctl_reg = BMC_SPI_FCTL_CTRL; |
| 763 | ct->fread_timing_reg = BMC_SPI_FREAD_TIMING; |
| 764 | ct->flash = BMC_FLASH_BASE; |
| 765 | |
| 766 | /* |
| 767 | * Snapshot control reg and sanitize it for our |
| 768 | * use, switching to 1-bit mode, clearing user |
| 769 | * mode if set, etc... |
| 770 | * |
| 771 | * Also configure SPI clock to something safe |
| 772 | * like HCLK/8 (24Mhz) |
| 773 | */ |
| 774 | ct->ctl_val = |
| 775 | (0x00 << 28) | /* Single bit */ |
| 776 | (0x00 << 24) | /* CE# width 16T */ |
| 777 | (0x00 << 16) | /* no command */ |
| 778 | (0x04 << 8) | /* HCLK/8 */ |
| 779 | (0x00 << 6) | /* no dummy cycle */ |
| 780 | (0x00); /* normal read */ |
| 781 | |
| 782 | /* Initial read mode is default */ |
| 783 | ct->ctl_read_val = ct->ctl_val; |
| 784 | |
| 785 | /* Initial read timings all 0 */ |
| 786 | ct->fread_timing_val = 0; |
| 787 | |
| 788 | /* Configure for read */ |
| 789 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 790 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg); |
| 791 | |
| 792 | ct->mode_4b = false; |
| 793 | |
| 794 | return true; |
| 795 | } |
| 796 | |
| 797 | static int ast_mem_set4b(struct spi_flash_ctrl *ctrl __unused, |
| 798 | bool enable __unused) |
| 799 | { |
| 800 | return 0; |
| 801 | } |
| 802 | |
| 803 | static int ast_mem_setup(struct spi_flash_ctrl *ctrl __unused, |
| 804 | uint32_t *tsize __unused) |
| 805 | { |
| 806 | return 0; |
| 807 | } |
| 808 | |
| 809 | static int ast_mem_chipid(struct spi_flash_ctrl *ctrl __unused, uint8_t *id_buf, |
| 810 | uint32_t *id_size) |
| 811 | { |
| 812 | if (*id_size < 3) |
| 813 | return -1; |
| 814 | |
| 815 | id_buf[0] = 0xaa; |
| 816 | id_buf[1] = 0x55; |
| 817 | id_buf[2] = 0xaa; |
| 818 | *id_size = 3; |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | static int ast_mem_write(struct spi_flash_ctrl *ctrl, uint32_t pos, |
| 823 | const void *buf, uint32_t len) |
| 824 | { |
| 825 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 826 | |
| 827 | /* |
| 828 | * This only works when the ahb is pointed at system memory. |
| 829 | */ |
| 830 | return ast_copy_to_ahb(ct->flash + pos, buf, len); |
| 831 | } |
| 832 | |
| 833 | static int ast_mem_erase(struct spi_flash_ctrl *ctrl, uint32_t addr, uint32_t size) |
| 834 | { |
| 835 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 836 | uint32_t pos, len, end = addr + size; |
| 837 | uint64_t zero = 0; |
| 838 | int ret; |
| 839 | |
| 840 | for (pos = addr; pos < end; pos += sizeof(zero)) { |
| 841 | if (pos + sizeof(zero) > end) |
| 842 | len = end - pos; |
| 843 | else |
| 844 | len = sizeof(zero); |
| 845 | |
| 846 | ret = ast_copy_to_ahb(ct->flash + pos, &zero, len); |
| 847 | if (ret) |
| 848 | return ret; |
| 849 | } |
| 850 | |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl) |
| 855 | { |
| 856 | struct ast_sf_ctrl *ct; |
| 857 | |
| 858 | if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC |
| 859 | && type != AST_SF_TYPE_MEM) |
| 860 | return -EINVAL; |
| 861 | |
| 862 | *ctrl = NULL; |
| 863 | ct = malloc(sizeof(*ct)); |
| 864 | if (!ct) { |
| 865 | FL_ERR("AST_SF: Failed to allocate\n"); |
| 866 | return -ENOMEM; |
| 867 | } |
| 868 | memset(ct, 0, sizeof(*ct)); |
| 869 | ct->type = type; |
| 870 | |
| 871 | if (type == AST_SF_TYPE_MEM) { |
| 872 | ct->ops.cmd_wr = NULL; |
| 873 | ct->ops.cmd_rd = NULL; |
| 874 | ct->ops.read = ast_sf_read; |
| 875 | ct->ops.set_4b = ast_mem_set4b; |
| 876 | ct->ops.write = ast_mem_write; |
| 877 | ct->ops.erase = ast_mem_erase; |
| 878 | ct->ops.setup = ast_mem_setup; |
| 879 | ct->ops.chip_id = ast_mem_chipid; |
| 880 | ct->flash = PNOR_FLASH_BASE; |
| 881 | } else { |
| 882 | ct->ops.cmd_wr = ast_sf_cmd_wr; |
| 883 | ct->ops.cmd_rd = ast_sf_cmd_rd; |
| 884 | ct->ops.set_4b = ast_sf_set_4b; |
| 885 | ct->ops.read = ast_sf_read; |
| 886 | ct->ops.setup = ast_sf_setup; |
| 887 | } |
| 888 | |
| 889 | ast_get_ahb_freq(); |
| 890 | |
| 891 | if (type == AST_SF_TYPE_PNOR) { |
| 892 | if (!ast_sf_init_pnor(ct)) |
| 893 | goto fail; |
| 894 | } else if (type == AST_SF_TYPE_BMC) { |
| 895 | if (!ast_sf_init_bmc(ct)) |
| 896 | goto fail; |
| 897 | } |
| 898 | |
| 899 | *ctrl = &ct->ops; |
| 900 | |
| 901 | return 0; |
| 902 | fail: |
| 903 | free(ct); |
| 904 | return -EIO; |
| 905 | } |
| 906 | |
| 907 | void ast_sf_close(struct spi_flash_ctrl *ctrl) |
| 908 | { |
| 909 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops); |
| 910 | |
| 911 | /* Restore control reg to read */ |
| 912 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg); |
| 913 | |
| 914 | /* Additional cleanup */ |
| 915 | if (ct->type == AST_SF_TYPE_PNOR) { |
| 916 | uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF); |
| 917 | if (reg != 0xffffffff) |
| 918 | ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF); |
| 919 | } |
| 920 | |
| 921 | /* Free the whole lot */ |
| 922 | free(ct); |
| 923 | } |