Norman James | 6a58a27 | 2015-10-07 14:34:16 -0500 | [diff] [blame] | 1 | #include <stdint.h>
|
| 2 | #include <stdbool.h>
|
| 3 | #include <stdlib.h>
|
| 4 | #include <errno.h>
|
| 5 | #include <stdio.h>
|
| 6 | #include <string.h>
|
| 7 |
|
| 8 | #include <libflash/libflash.h>
|
| 9 | #include <libflash/libflash-priv.h>
|
| 10 |
|
| 11 | #include "ast.h"
|
| 12 |
|
| 13 | #ifndef __unused
|
| 14 | #define __unused __attribute__((unused))
|
| 15 | #endif
|
| 16 |
|
| 17 | #define CALIBRATE_BUF_SIZE 16384
|
| 18 |
|
| 19 | struct ast_sf_ctrl {
|
| 20 | /* We have 2 controllers, one for the BMC flash, one for the PNOR */
|
| 21 | uint8_t type;
|
| 22 |
|
| 23 | /* Address and previous value of the ctrl register */
|
| 24 | uint32_t ctl_reg;
|
| 25 |
|
| 26 | /* Control register value for normal commands */
|
| 27 | uint32_t ctl_val;
|
| 28 |
|
| 29 | /* Control register value for (fast) reads */
|
| 30 | uint32_t ctl_read_val;
|
| 31 |
|
| 32 | /* Flash read timing register */
|
| 33 | uint32_t fread_timing_reg;
|
| 34 | uint32_t fread_timing_val;
|
| 35 |
|
| 36 | /* Address of the flash mapping */
|
| 37 | uint32_t flash;
|
| 38 |
|
| 39 | /* Current 4b mode */
|
| 40 | bool mode_4b;
|
| 41 |
|
| 42 | /* Callbacks */
|
| 43 | struct spi_flash_ctrl ops;
|
| 44 | };
|
| 45 |
|
| 46 | static uint32_t ast_ahb_freq;
|
| 47 |
|
| 48 | static const uint32_t ast_ct_hclk_divs[] = {
|
| 49 | 0xf, /* HCLK */
|
| 50 | 0x7, /* HCLK/2 */
|
| 51 | 0xe, /* HCLK/3 */
|
| 52 | 0x6, /* HCLK/4 */
|
| 53 | 0xd, /* HCLK/5 */
|
| 54 | };
|
| 55 |
|
| 56 | static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)
|
| 57 | {
|
| 58 | /* Switch to user mode, CE# dropped */
|
| 59 | ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
|
| 60 |
|
| 61 | /* user mode, CE# active */
|
| 62 | ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);
|
| 63 |
|
| 64 | /* write cmd */
|
| 65 | return ast_copy_to_ahb(ct->flash, &cmd, 1);
|
| 66 | }
|
| 67 |
|
| 68 | static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)
|
| 69 | {
|
| 70 | /* clear CE# */
|
| 71 | ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
|
| 72 |
|
| 73 | /* Switch back to read mode */
|
| 74 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 75 | }
|
| 76 |
|
| 77 | static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)
|
| 78 | {
|
| 79 | const void *ap;
|
| 80 |
|
| 81 | /* Layout address MSB first in memory */
|
| 82 | addr = cpu_to_be32(addr);
|
| 83 |
|
| 84 | /* Send the right amount of bytes */
|
| 85 | ap = (char *)&addr;
|
| 86 |
|
| 87 | if (ct->mode_4b)
|
| 88 | return ast_copy_to_ahb(ct->flash, ap, 4);
|
| 89 | else
|
| 90 | return ast_copy_to_ahb(ct->flash, ap + 1, 3);
|
| 91 | }
|
| 92 |
|
| 93 | static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,
|
| 94 | bool has_addr, uint32_t addr, void *buffer,
|
| 95 | uint32_t size)
|
| 96 | {
|
| 97 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 98 | int rc;
|
| 99 |
|
| 100 | rc = ast_sf_start_cmd(ct, cmd);
|
| 101 | if (rc)
|
| 102 | goto bail;
|
| 103 | if (has_addr) {
|
| 104 | rc = ast_sf_send_addr(ct, addr);
|
| 105 | if (rc)
|
| 106 | goto bail;
|
| 107 | }
|
| 108 | if (buffer && size)
|
| 109 | rc = ast_copy_from_ahb(buffer, ct->flash, size);
|
| 110 | bail:
|
| 111 | ast_sf_end_cmd(ct);
|
| 112 | return rc;
|
| 113 | }
|
| 114 |
|
| 115 | static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,
|
| 116 | bool has_addr, uint32_t addr, const void *buffer,
|
| 117 | uint32_t size)
|
| 118 | {
|
| 119 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 120 | int rc;
|
| 121 |
|
| 122 | rc = ast_sf_start_cmd(ct, cmd);
|
| 123 | if (rc)
|
| 124 | goto bail;
|
| 125 | if (has_addr) {
|
| 126 | rc = ast_sf_send_addr(ct, addr);
|
| 127 | if (rc)
|
| 128 | goto bail;
|
| 129 | }
|
| 130 | if (buffer && size)
|
| 131 | rc = ast_copy_to_ahb(ct->flash, buffer, size);
|
| 132 | bail:
|
| 133 | ast_sf_end_cmd(ct);
|
| 134 | return rc;
|
| 135 | }
|
| 136 |
|
| 137 | static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
|
| 138 | {
|
| 139 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 140 |
|
| 141 | if (ct->type != AST_SF_TYPE_PNOR)
|
| 142 | return enable ? FLASH_ERR_4B_NOT_SUPPORTED : 0;
|
| 143 |
|
| 144 | /*
|
| 145 | * We update the "old" value as well since when quitting
|
| 146 | * we don't restore the mode of the flash itself so we need
|
| 147 | * to leave the controller in a compatible setup
|
| 148 | */
|
| 149 | if (enable) {
|
| 150 | ct->ctl_val |= 0x2000;
|
| 151 | ct->ctl_read_val |= 0x2000;
|
| 152 | } else {
|
| 153 | ct->ctl_val &= ~0x2000;
|
| 154 | ct->ctl_read_val &= ~0x2000;
|
| 155 | }
|
| 156 | ct->mode_4b = enable;
|
| 157 |
|
| 158 | /* Update read mode */
|
| 159 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 160 |
|
| 161 | return 0;
|
| 162 | }
|
| 163 |
|
| 164 | static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
|
| 165 | void *buf, uint32_t len)
|
| 166 | {
|
| 167 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 168 |
|
| 169 | /*
|
| 170 | * We are in read mode by default. We don't yet support fancy
|
| 171 | * things like fast read or X2 mode
|
| 172 | */
|
| 173 | return ast_copy_from_ahb(buf, ct->flash + pos, len);
|
| 174 | }
|
| 175 |
|
| 176 | static void ast_get_ahb_freq(void)
|
| 177 | {
|
| 178 | static const uint32_t cpu_freqs_24_48[] = {
|
| 179 | 384000000,
|
| 180 | 360000000,
|
| 181 | 336000000,
|
| 182 | 408000000
|
| 183 | };
|
| 184 | static const uint32_t cpu_freqs_25[] = {
|
| 185 | 400000000,
|
| 186 | 375000000,
|
| 187 | 350000000,
|
| 188 | 425000000
|
| 189 | };
|
| 190 | static const uint32_t ahb_div[] = { 1, 2, 4, 3 };
|
| 191 | uint32_t strap, cpu_clk, div;
|
| 192 |
|
| 193 | if (ast_ahb_freq)
|
| 194 | return;
|
| 195 |
|
| 196 | /* HW strapping gives us the CPU freq and AHB divisor */
|
| 197 | strap = ast_ahb_readl(SCU_HW_STRAPPING);
|
| 198 | if (strap & 0x00800000) {
|
| 199 | FL_DBG("AST: CLKIN 25Mhz\n");
|
| 200 | cpu_clk = cpu_freqs_25[(strap >> 8) & 3];
|
| 201 | } else {
|
| 202 | FL_DBG("AST: CLKIN 24/48Mhz\n");
|
| 203 | cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];
|
| 204 | }
|
| 205 | FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);
|
| 206 | div = ahb_div[(strap >> 10) & 3];
|
| 207 | ast_ahb_freq = cpu_clk / div;
|
| 208 | FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);
|
| 209 | }
|
| 210 |
|
| 211 | static int ast_sf_check_reads(struct ast_sf_ctrl *ct,
|
| 212 | const uint8_t *golden_buf, uint8_t *test_buf)
|
| 213 | {
|
| 214 | int i, rc;
|
| 215 |
|
| 216 | for (i = 0; i < 10; i++) {
|
| 217 | rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);
|
| 218 | if (rc)
|
| 219 | return rc;
|
| 220 | if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)
|
| 221 | return FLASH_ERR_VERIFY_FAILURE;
|
| 222 | }
|
| 223 | return 0;
|
| 224 | }
|
| 225 |
|
| 226 | static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,
|
| 227 | const uint8_t *golden_buf, uint8_t *test_buf)
|
| 228 | {
|
| 229 | int i, rc;
|
| 230 | int good_pass = -1, pass_count = 0;
|
| 231 | uint32_t shift = (hdiv - 1) << 2;
|
| 232 | uint32_t mask = ~(0xfu << shift);
|
| 233 |
|
| 234 | #define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
|
| 235 |
|
| 236 | /* Try HCLK delay 0..5, each one with/without delay and look for a
|
| 237 | * good pair.
|
| 238 | */
|
| 239 | for (i = 0; i < 12; i++) {
|
| 240 | bool pass;
|
| 241 |
|
| 242 | ct->fread_timing_val &= mask;
|
| 243 | ct->fread_timing_val |= FREAD_TPASS(i) << shift;
|
| 244 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
|
| 245 | rc = ast_sf_check_reads(ct, golden_buf, test_buf);
|
| 246 | if (rc && rc != FLASH_ERR_VERIFY_FAILURE)
|
| 247 | return rc;
|
| 248 | pass = (rc == 0);
|
| 249 | FL_DBG(" * [%08x] %d HCLK delay, %dns DI delay : %s\n",
|
| 250 | ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");
|
| 251 | if (pass) {
|
| 252 | pass_count++;
|
| 253 | if (pass_count == 3) {
|
| 254 | good_pass = i - 1;
|
| 255 | break;
|
| 256 | }
|
| 257 | } else
|
| 258 | pass_count = 0;
|
| 259 | }
|
| 260 |
|
| 261 | /* No good setting for this frequency */
|
| 262 | if (good_pass < 0)
|
| 263 | return FLASH_ERR_VERIFY_FAILURE;
|
| 264 |
|
| 265 | /* We have at least one pass of margin, let's use first pass */
|
| 266 | ct->fread_timing_val &= mask;
|
| 267 | ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;
|
| 268 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
|
| 269 | FL_DBG("AST: * -> good is pass %d [0x%08x]\n",
|
| 270 | good_pass, ct->fread_timing_val);
|
| 271 | return 0;
|
| 272 | }
|
| 273 |
|
| 274 | static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)
|
| 275 | {
|
| 276 | const uint32_t *tb32 = (const uint32_t *)test_buf;
|
| 277 | uint32_t i, cnt = 0;
|
| 278 |
|
| 279 | /* We check if we have enough words that are neither all 0
|
| 280 | * nor all 1's so the calibration can be considered valid.
|
| 281 | *
|
| 282 | * I use an arbitrary threshold for now of 64
|
| 283 | */
|
| 284 | size >>= 2;
|
| 285 | for (i = 0; i < size; i++) {
|
| 286 | if (tb32[i] != 0 && tb32[i] != 0xffffffff)
|
| 287 | cnt++;
|
| 288 | }
|
| 289 | return cnt >= 64;
|
| 290 | }
|
| 291 |
|
| 292 | static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct, struct flash_info *info,
|
| 293 | uint32_t max_freq)
|
| 294 | {
|
| 295 | uint8_t *golden_buf, *test_buf;
|
| 296 | int i, rc, best_div = -1;
|
| 297 | uint32_t save_read_val = ct->ctl_read_val;
|
| 298 |
|
| 299 | test_buf = malloc(CALIBRATE_BUF_SIZE * 2);
|
| 300 | golden_buf = test_buf + CALIBRATE_BUF_SIZE;
|
| 301 |
|
| 302 | /* We start with the dumbest setting and read some data */
|
| 303 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
|
| 304 | (0x00 << 28) | /* Single bit */
|
| 305 | (0x00 << 24) | /* CE# max */
|
| 306 | (0x03 << 16) | /* use normal reads */
|
| 307 | (0x00 << 8) | /* HCLK/16 */
|
| 308 | (0x00 << 6) | /* no dummy cycle */
|
| 309 | (0x00); /* normal read */
|
| 310 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 311 |
|
| 312 | rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);
|
| 313 | if (rc) {
|
| 314 | free(test_buf);
|
| 315 | return rc;
|
| 316 | }
|
| 317 |
|
| 318 | /* Establish our read mode with freq field set to 0 */
|
| 319 | ct->ctl_read_val = save_read_val & 0xfffff0ff;
|
| 320 |
|
| 321 | /* Check if calibration data is suitable */
|
| 322 | if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {
|
| 323 | FL_INF("AST: Calibration area too uniform, "
|
| 324 | "using low speed\n");
|
| 325 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 326 | free(test_buf);
|
| 327 | return 0;
|
| 328 | }
|
| 329 |
|
| 330 | /* Now we iterate the HCLK dividers until we find our breaking point */
|
| 331 | for (i = 5; i > 0; i--) {
|
| 332 | uint32_t tv, freq;
|
| 333 |
|
| 334 | /* Compare timing to max */
|
| 335 | freq = ast_ahb_freq / i;
|
| 336 | if (freq >= max_freq)
|
| 337 | continue;
|
| 338 |
|
| 339 | /* Set the timing */
|
| 340 | tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);
|
| 341 | ast_ahb_writel(tv, ct->ctl_reg);
|
| 342 | FL_DBG("AST: Trying HCLK/%d...\n", i);
|
| 343 | rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);
|
| 344 |
|
| 345 | /* Some other error occurred, bail out */
|
| 346 | if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {
|
| 347 | free(test_buf);
|
| 348 | return rc;
|
| 349 | }
|
| 350 | if (rc == 0)
|
| 351 | best_div = i;
|
| 352 | }
|
| 353 | free(test_buf);
|
| 354 |
|
| 355 | /* Nothing found ? */
|
| 356 | if (best_div < 0)
|
| 357 | FL_ERR("AST: No good frequency, using dumb slow\n");
|
| 358 | else {
|
| 359 | FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);
|
| 360 | ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);
|
| 361 | }
|
| 362 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 363 |
|
| 364 | return 0;
|
| 365 | }
|
| 366 |
|
| 367 | static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)
|
| 368 | {
|
| 369 | int i;
|
| 370 |
|
| 371 | /* It appears that running commands at HCLK/2 on some micron
|
| 372 | * chips results in occasionally reads of bogus status (that
|
| 373 | * or unrelated chip hangs).
|
| 374 | *
|
| 375 | * Since we cannot calibrate properly the reads for commands,
|
| 376 | * instead, let's limit our SPI frequency to HCLK/4 to stay
|
| 377 | * on the safe side of things
|
| 378 | */
|
| 379 | #define MIN_CMD_FREQ 4
|
| 380 | for (i = MIN_CMD_FREQ; i <= 5; i++) {
|
| 381 | uint32_t freq = ast_ahb_freq / i;
|
| 382 | if (freq >= max_freq)
|
| 383 | continue;
|
| 384 | *ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);
|
| 385 | return i;
|
| 386 | }
|
| 387 | return 0;
|
| 388 | }
|
| 389 |
|
| 390 | static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)
|
| 391 | {
|
| 392 | int rc, div;
|
| 393 | uint8_t srcr[2];
|
| 394 |
|
| 395 | /*
|
| 396 | * Those Macronix chips support dual reads at 104Mhz
|
| 397 | * and dual IO at 84Mhz with 4 dummies.
|
| 398 | *
|
| 399 | * Our calibration algo should give us something along
|
| 400 | * the lines of HCLK/3 (HCLK/2 seems to work sometimes
|
| 401 | * but appears to be fairly unreliable) which is 64Mhz
|
| 402 | *
|
| 403 | * So we chose dual IO mode.
|
| 404 | *
|
| 405 | * The CE# inactive width for reads must be 7ns, we set it
|
| 406 | * to 3T which is about 15ns at the fastest speed we support
|
| 407 | * HCLK/2) as I've had issue with smaller values.
|
| 408 | *
|
| 409 | * For write and program it's 30ns so let's set the value
|
| 410 | * for normal ops to 6T.
|
| 411 | *
|
| 412 | * Preserve the current 4b mode.
|
| 413 | */
|
| 414 | FL_DBG("AST: Setting up Macronix...\n");
|
| 415 |
|
| 416 | /*
|
| 417 | * Read the status and config registers
|
| 418 | */
|
| 419 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);
|
| 420 | if (rc != 0) {
|
| 421 | FL_ERR("AST: Failed to read status\n");
|
| 422 | return rc;
|
| 423 | }
|
| 424 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);
|
| 425 | if (rc != 0) {
|
| 426 | FL_ERR("AST: Failed to read configuration\n");
|
| 427 | return rc;
|
| 428 | }
|
| 429 |
|
| 430 | FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
|
| 431 |
|
| 432 | /* Switch to 8 dummy cycles to enable 104Mhz operations */
|
| 433 | srcr[1] = (srcr[1] & 0x3f) | 0x80;
|
| 434 |
|
| 435 | rc = fl_wren(&ct->ops);
|
| 436 | if (rc) {
|
| 437 | FL_ERR("AST: Failed to WREN for Macronix config\n");
|
| 438 | return rc;
|
| 439 | }
|
| 440 |
|
| 441 | rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);
|
| 442 | if (rc != 0) {
|
| 443 | FL_ERR("AST: Failed to write Macronix config\n");
|
| 444 | return rc;
|
| 445 | }
|
| 446 | rc = fl_sync_wait_idle(&ct->ops);;
|
| 447 | if (rc != 0) {
|
| 448 | FL_ERR("AST: Failed waiting for config write\n");
|
| 449 | return rc;
|
| 450 | }
|
| 451 |
|
| 452 | FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
|
| 453 |
|
| 454 | /* Use 2READ */
|
| 455 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
|
| 456 | (0x03 << 28) | /* Dual IO */
|
| 457 | (0x0d << 24) | /* CE# width 3T */
|
| 458 | (0xbb << 16) | /* 2READ command */
|
| 459 | (0x00 << 8) | /* HCLK/16 (optimize later) */
|
| 460 | (0x02 << 6) | /* 2 bytes dummy cycle (8 clocks) */
|
| 461 | (0x01); /* fast read */
|
| 462 |
|
| 463 | /* Configure SPI flash read timing */
|
| 464 | rc = ast_sf_optimize_reads(ct, info, 104000000);
|
| 465 | if (rc) {
|
| 466 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
|
| 467 | return rc;
|
| 468 | }
|
| 469 |
|
| 470 | /*
|
| 471 | * For other commands and writes also increase the SPI clock
|
| 472 | * to HCLK/2 since the chip supports up to 133Mhz and set
|
| 473 | * CE# inactive to 6T. We request a timing that is 20% below
|
| 474 | * the limit of the chip, so about 106Mhz which should fit.
|
| 475 | */
|
| 476 | ct->ctl_val = (ct->ctl_val & 0x2000) |
|
| 477 | (0x00 << 28) | /* Single bit */
|
| 478 | (0x0a << 24) | /* CE# width 6T (b1010) */
|
| 479 | (0x00 << 16) | /* no command */
|
| 480 | (0x00 << 8) | /* HCLK/16 (done later) */
|
| 481 | (0x00 << 6) | /* no dummy cycle */
|
| 482 | (0x00); /* normal read */
|
| 483 |
|
| 484 | div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
|
| 485 | FL_DBG("AST: Command timing set to HCLK/%d\n", div);
|
| 486 |
|
| 487 | /* Update chip with current read config */
|
| 488 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 489 | return 0;
|
| 490 | }
|
| 491 |
|
| 492 | static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)
|
| 493 | {
|
| 494 | int rc, div;
|
| 495 |
|
| 496 | FL_DBG("AST: Setting up Windbond...\n");
|
| 497 |
|
| 498 | /*
|
| 499 | * This Windbond chip support dual reads at 104Mhz
|
| 500 | * with 8 dummy cycles.
|
| 501 | *
|
| 502 | * The CE# inactive width for reads must be 10ns, we set it
|
| 503 | * to 3T which is about 15.6ns.
|
| 504 | */
|
| 505 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
|
| 506 | (0x02 << 28) | /* Dual bit data only */
|
| 507 | (0x0e << 24) | /* CE# width 2T (b1110) */
|
| 508 | (0x3b << 16) | /* DREAD command */
|
| 509 | (0x00 << 8) | /* HCLK/16 */
|
| 510 | (0x01 << 6) | /* 1-byte dummy cycle */
|
| 511 | (0x01); /* fast read */
|
| 512 |
|
| 513 | /* Configure SPI flash read timing */
|
| 514 | rc = ast_sf_optimize_reads(ct, info, 104000000);
|
| 515 | if (rc) {
|
| 516 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
|
| 517 | return rc;
|
| 518 | }
|
| 519 |
|
| 520 | /*
|
| 521 | * For other commands and writes also increase the SPI clock
|
| 522 | * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
|
| 523 | * for write and erase is 50ns so let's set it to 10T.
|
| 524 | */
|
| 525 | ct->ctl_val = (ct->ctl_read_val & 0x2000) |
|
| 526 | (0x00 << 28) | /* Single bit */
|
| 527 | (0x06 << 24) | /* CE# width 10T (b0110) */
|
| 528 | (0x00 << 16) | /* no command */
|
| 529 | (0x00 << 8) | /* HCLK/16 */
|
| 530 | (0x00 << 6) | /* no dummy cycle */
|
| 531 | (0x01); /* fast read */
|
| 532 |
|
| 533 | div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
|
| 534 | FL_DBG("AST: Command timing set to HCLK/%d\n", div);
|
| 535 |
|
| 536 | /* Update chip with current read config */
|
| 537 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 538 | return 0;
|
| 539 | }
|
| 540 |
|
| 541 | static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)
|
| 542 | {
|
| 543 | uint8_t vconf, ext_id[6];
|
| 544 | int rc, div;
|
| 545 |
|
| 546 | FL_DBG("AST: Setting up Micron...\n");
|
| 547 |
|
| 548 | /*
|
| 549 | * Read the extended chip ID to try to detect old vs. new
|
| 550 | * flashes since old Micron flashes have a lot of issues
|
| 551 | */
|
| 552 | rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);
|
| 553 | if (rc != 0) {
|
| 554 | FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");
|
| 555 | return 0;
|
| 556 | }
|
| 557 | /* Check ID matches expectations */
|
| 558 | if (ext_id[0] != ((info->id >> 16) & 0xff) ||
|
| 559 | ext_id[1] != ((info->id >> 8) & 0xff) ||
|
| 560 | ext_id[2] != ((info->id ) & 0xff)) {
|
| 561 | FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");
|
| 562 | return 0;
|
| 563 | }
|
| 564 | FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);
|
| 565 |
|
| 566 | /* Check for old (<45nm) chips, don't try to be fancy on those */
|
| 567 | if (!(ext_id[4] & 0x40)) {
|
| 568 | FL_DBG("AST: Old chip, using dumb timings\n");
|
| 569 | goto dumb;
|
| 570 | }
|
| 571 |
|
| 572 | /*
|
| 573 | * Read the micron specific volatile configuration reg
|
| 574 | */
|
| 575 | rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);
|
| 576 | if (rc != 0) {
|
| 577 | FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");
|
| 578 | goto dumb;
|
| 579 | }
|
| 580 | FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);
|
| 581 |
|
| 582 | /* Switch to 8 dummy cycles (we might be able to operate with 4
|
| 583 | * but let's keep some margin
|
| 584 | */
|
| 585 | vconf = (vconf & 0x0f) | 0x80;
|
| 586 |
|
| 587 | rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);
|
| 588 | if (rc != 0) {
|
| 589 | FL_ERR("AST: Failed to write Micron vconf, "
|
| 590 | " sticking to dumb speed\n");
|
| 591 | goto dumb;
|
| 592 | }
|
| 593 | rc = fl_sync_wait_idle(&ct->ops);;
|
| 594 | if (rc != 0) {
|
| 595 | FL_ERR("AST: Failed waiting for config write\n");
|
| 596 | return rc;
|
| 597 | }
|
| 598 | FL_DBG("AST: Updated to : 0x%02x\n", vconf);
|
| 599 |
|
| 600 | /*
|
| 601 | * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz
|
| 602 | *
|
| 603 | * The CE# inactive width for reads must be 20ns, we set it
|
| 604 | * to 4T which is about 20.8ns.
|
| 605 | */
|
| 606 | ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
|
| 607 | (0x03 << 28) | /* Single bit */
|
| 608 | (0x0c << 24) | /* CE# 4T */
|
| 609 | (0xbb << 16) | /* 2READ command */
|
| 610 | (0x00 << 8) | /* HCLK/16 (optimize later) */
|
| 611 | (0x02 << 6) | /* 8 dummy cycles (2 bytes) */
|
| 612 | (0x01); /* fast read */
|
| 613 |
|
| 614 | /* Configure SPI flash read timing */
|
| 615 | rc = ast_sf_optimize_reads(ct, info, 133000000);
|
| 616 | if (rc) {
|
| 617 | FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
|
| 618 | return rc;
|
| 619 | }
|
| 620 |
|
| 621 | /*
|
| 622 | * For other commands and writes also increase the SPI clock
|
| 623 | * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
|
| 624 | * for write and erase is 50ns so let's set it to 10T.
|
| 625 | */
|
| 626 | ct->ctl_val = (ct->ctl_read_val & 0x2000) |
|
| 627 | (0x00 << 28) | /* Single bit */
|
| 628 | (0x06 << 24) | /* CE# width 10T (b0110) */
|
| 629 | (0x00 << 16) | /* no command */
|
| 630 | (0x00 << 8) | /* HCLK/16 */
|
| 631 | (0x00 << 6) | /* no dummy cycle */
|
| 632 | (0x00); /* norm read */
|
| 633 |
|
| 634 | div = ast_sf_get_hclk(&ct->ctl_val, 133000000);
|
| 635 | FL_DBG("AST: Command timing set to HCLK/%d\n", div);
|
| 636 |
|
| 637 | /* Update chip with current read config */
|
| 638 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 639 |
|
| 640 | return 0;
|
| 641 |
|
| 642 | dumb:
|
| 643 | ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
|
| 644 | (0x00 << 28) | /* Single bit */
|
| 645 | (0x00 << 24) | /* CE# max */
|
| 646 | (0x03 << 16) | /* use normal reads */
|
| 647 | (0x06 << 8) | /* HCLK/4 */
|
| 648 | (0x00 << 6) | /* no dummy cycle */
|
| 649 | (0x00); /* normal read */
|
| 650 |
|
| 651 | /* Update chip with current read config */
|
| 652 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 653 |
|
| 654 | return 0;
|
| 655 | }
|
| 656 |
|
| 657 | static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
|
| 658 | {
|
| 659 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 660 | struct flash_info *info = ctrl->finfo;
|
| 661 |
|
| 662 | (void)tsize;
|
| 663 |
|
| 664 | /*
|
| 665 | * Configure better timings and read mode for known
|
| 666 | * flash chips
|
| 667 | */
|
| 668 | switch(info->id) {
|
| 669 | case 0xc22019: /* MX25L25635F */
|
| 670 | case 0xc2201a: /* MX66L51235F */
|
| 671 | return ast_sf_setup_macronix(ct, info);
|
| 672 | case 0xef4018: /* W25Q128BV */
|
| 673 | return ast_sf_setup_winbond(ct, info);
|
| 674 | case 0x20ba20: /* MT25Qx512xx */
|
| 675 | return ast_sf_setup_micron(ct, info);
|
| 676 | }
|
| 677 | /* No special tuning */
|
| 678 | return 0;
|
| 679 | }
|
| 680 |
|
| 681 | static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)
|
| 682 | {
|
| 683 | uint32_t reg;
|
| 684 |
|
| 685 | ct->ctl_reg = PNOR_SPI_FCTL_CTRL;
|
| 686 | ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;
|
| 687 | ct->flash = PNOR_FLASH_BASE;
|
| 688 |
|
| 689 | /* Enable writing to the controller */
|
| 690 | reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
|
| 691 | if (reg == 0xffffffff) {
|
| 692 | FL_ERR("AST_SF: Failed read from controller config\n");
|
| 693 | return false;
|
| 694 | }
|
| 695 | ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);
|
| 696 |
|
| 697 | /*
|
| 698 | * Snapshot control reg and sanitize it for our
|
| 699 | * use, switching to 1-bit mode, clearing user
|
| 700 | * mode if set, etc...
|
| 701 | *
|
| 702 | * Also configure SPI clock to something safe
|
| 703 | * like HCLK/8 (24Mhz)
|
| 704 | */
|
| 705 | ct->ctl_val = ast_ahb_readl(ct->ctl_reg);
|
| 706 | if (ct->ctl_val == 0xffffffff) {
|
| 707 | FL_ERR("AST_SF: Failed read from controller control\n");
|
| 708 | return false;
|
| 709 | }
|
| 710 |
|
| 711 | ct->ctl_val = (ct->ctl_val & 0x2000) |
|
| 712 | (0x00 << 28) | /* Single bit */
|
| 713 | (0x00 << 24) | /* CE# width 16T */
|
| 714 | (0x00 << 16) | /* no command */
|
| 715 | (0x04 << 8) | /* HCLK/8 */
|
| 716 | (0x00 << 6) | /* no dummy cycle */
|
| 717 | (0x00); /* normal read */
|
| 718 |
|
| 719 | /* Initial read mode is default */
|
| 720 | ct->ctl_read_val = ct->ctl_val;
|
| 721 |
|
| 722 | /* Initial read timings all 0 */
|
| 723 | ct->fread_timing_val = 0;
|
| 724 |
|
| 725 | /* Configure for read */
|
| 726 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 727 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
|
| 728 |
|
| 729 | if (ct->ctl_val & 0x2000)
|
| 730 | ct->mode_4b = true;
|
| 731 | else
|
| 732 | ct->mode_4b = false;
|
| 733 |
|
| 734 | return true;
|
| 735 | }
|
| 736 |
|
| 737 | static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)
|
| 738 | {
|
| 739 | ct->ctl_reg = BMC_SPI_FCTL_CTRL;
|
| 740 | ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;
|
| 741 | ct->flash = BMC_FLASH_BASE;
|
| 742 |
|
| 743 | /*
|
| 744 | * Snapshot control reg and sanitize it for our
|
| 745 | * use, switching to 1-bit mode, clearing user
|
| 746 | * mode if set, etc...
|
| 747 | *
|
| 748 | * Also configure SPI clock to something safe
|
| 749 | * like HCLK/8 (24Mhz)
|
| 750 | */
|
| 751 | ct->ctl_val =
|
| 752 | (0x00 << 28) | /* Single bit */
|
| 753 | (0x00 << 24) | /* CE# width 16T */
|
| 754 | (0x00 << 16) | /* no command */
|
| 755 | (0x04 << 8) | /* HCLK/8 */
|
| 756 | (0x00 << 6) | /* no dummy cycle */
|
| 757 | (0x00); /* normal read */
|
| 758 |
|
| 759 | /* Initial read mode is default */
|
| 760 | ct->ctl_read_val = ct->ctl_val;
|
| 761 |
|
| 762 | /* Initial read timings all 0 */
|
| 763 | ct->fread_timing_val = 0;
|
| 764 |
|
| 765 | /* Configure for read */
|
| 766 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 767 | ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
|
| 768 |
|
| 769 | ct->mode_4b = false;
|
| 770 |
|
| 771 | return true;
|
| 772 | }
|
| 773 |
|
| 774 | int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)
|
| 775 | {
|
| 776 | struct ast_sf_ctrl *ct;
|
| 777 |
|
| 778 | if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC)
|
| 779 | return -EINVAL;
|
| 780 |
|
| 781 | *ctrl = NULL;
|
| 782 | ct = malloc(sizeof(*ct));
|
| 783 | if (!ct) {
|
| 784 | FL_ERR("AST_SF: Failed to allocate\n");
|
| 785 | return -ENOMEM;
|
| 786 | }
|
| 787 | memset(ct, 0, sizeof(*ct));
|
| 788 | ct->type = type;
|
| 789 | ct->ops.cmd_wr = ast_sf_cmd_wr;
|
| 790 | ct->ops.cmd_rd = ast_sf_cmd_rd;
|
| 791 | ct->ops.set_4b = ast_sf_set_4b;
|
| 792 | ct->ops.read = ast_sf_read;
|
| 793 | ct->ops.setup = ast_sf_setup;
|
| 794 |
|
| 795 | ast_get_ahb_freq();
|
| 796 |
|
| 797 | if (type == AST_SF_TYPE_PNOR) {
|
| 798 | if (!ast_sf_init_pnor(ct))
|
| 799 | goto fail;
|
| 800 | } else {
|
| 801 | if (!ast_sf_init_bmc(ct))
|
| 802 | goto fail;
|
| 803 | }
|
| 804 |
|
| 805 | *ctrl = &ct->ops;
|
| 806 |
|
| 807 | return 0;
|
| 808 | fail:
|
| 809 | free(ct);
|
| 810 | return -EIO;
|
| 811 | }
|
| 812 |
|
| 813 | void ast_sf_close(struct spi_flash_ctrl *ctrl)
|
| 814 | {
|
| 815 | struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
|
| 816 |
|
| 817 | /* Restore control reg to read */
|
| 818 | ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
|
| 819 |
|
| 820 | /* Additional cleanup */
|
| 821 | if (ct->type == AST_SF_TYPE_PNOR) {
|
| 822 | uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
|
| 823 | if (reg != 0xffffffff)
|
| 824 | ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);
|
| 825 | }
|
| 826 |
|
| 827 | /* Free the whole lot */
|
| 828 | free(ct);
|
| 829 | }
|
| 830 |
|